LI Yuanzhi, NIU Guoqing, ZHANG Xuanxuan. ESN regularization model for discriminating mine water inrush source[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 108-114. DOI: 10.3969/j.issn.1001-1986.2018.01.019
Citation: LI Yuanzhi, NIU Guoqing, ZHANG Xuanxuan. ESN regularization model for discriminating mine water inrush source[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 108-114. DOI: 10.3969/j.issn.1001-1986.2018.01.019

ESN regularization model for discriminating mine water inrush source

Funds: 

Innovation Team Development Program of Ministry of Education (IRT_16R22)

More Information
  • Received Date: May 04, 2017
  • Published Date: February 24, 2018
  • Aiming at the problem that the standard echo state neural network(ESN) is over-fitting due to the abnormal solution, six kinds of regularization methods are combined with ESN neural network and applied to discriminate mine water inrush source. The models were evaluated and compared with the standard ESN model. The results show that the ESN water source discrimination model is prone to over-fitting, and the accuracy of discrimination is only 49%~88%. The damping least squares singular decomposition method(DSVD) combined with generalized cross validation method(GCV) called as the regularization method can improve the accuracy of the model, the accuracy of the model is improved to 100%, the best accuracy is about 64% higher than that of the standard ESN model, and the stability is improved by about 61%, and the method is adaptable to the reserve pool, which can simplify the complex mapping of the model, improve the computational efficiency, and enhance the generalization ability of the ESN discrimination model. Therefore, the ESN water source discrimination model based on GSVD-GCV regularization can be used as a new method to determine the source of water inrush in a rapid and effective way.
  • [1]
    张海鹏. 浅析煤矿中的水灾害防治[J]. 中国安全生产科学技术,2008,4(5):100-103.

    ZHANG Haipeng. Probe into prevention and control of water disaster in coal mine[J]. Journal of Safety Science and Technology,2008,4(5):100-103.
    [2]
    钱家忠,吕纯,赵卫东,等. Elman与BP神经网络在矿井水源判别中的应用[J]. 系统工程理论与实践,2010,30(1):145-150.

    QIAN Jiazhong,LYU Chun,ZHAO Weidong,et al. Comparison of application on Elman and BP neural networks in discriminating water bursting source of coal mine[J]. Systems Engineering-Theory & Practice,2010,30(1):145-150.
    [3]
    徐星,郭兵兵,王公忠. 人工神经网络在矿井多水源识别中的应用[J]. 中国安全生产科学技术,2016,12(1):181-185.

    XU Xing,GUO Bingbing,WANG Gongzhong. Application of artificial neural network in recognition mine multiple water sources[J]. Journal of Safety Science and Technology,2016, 12(1):181-185.
    [4]
    秦波,吴庆朝,张娟娟,等. 基于PSO优化SVM的转炉炼钢用氧量预测研究[J]. 测控技术,2014,33(12):121-124.

    QIN Bo,WU Qingchao,ZHANG Juanjuan,et al. Blowing oxygen volume prediction of BOF steelmaking based on PSO-SVM[J]. Measurement & Control Technology,2014, 33(12):121-124.
    [5]
    焦李成,杨淑媛,刘芳,等. 神经网络七十年:回顾与展望[J]. 计算机学报,2016,39(8):1697-1716.

    JIAO Licheng,YANG Shuyuan,LIU Fang,et al. Seventy years beyond neural networks:retrospect and prospect[J]. Chinese Journal of Computers,2016,39(8):1697-1716.
    [6]
    李垣志,牛国庆,刘慧玲. 改进的GA-BP神经网络在矿井突水水源判别中的应用[J]. 中国安全生产科学技术,2016, 12(7):77-81.

    LI Yuanzhi,NIU Guoqing,LIU Huiling. Application of improved GA-BP neural network in the identification of mine water inrush sources[J]. Journal of Safety Science and Technology, 2016,12(7):77-81.
    [7]
    王江荣,黄建华,罗资琴,等. 基于粗糙集的Logistic回归模型在矿井突水模式识别中的应用[J]. 煤田地质与勘探,2015, 43(6):70-74.

    WANG Jiangrong,HUANG Jianhua,LUO Ziqin,et al. Application of Logistic regression model based on rough set in recognition of mine water inrush pattern[J]. Coal Geology & Exploration,2015,43(6):70-74.
    [8]
    柴毅,周海林,付东莉,等. 基于ESN和PSO的非线性模型预测控制[J]. 控制工程,2011,18(6):864-867.

    CHAI Yi,ZHOU Hailin,FU Dongli,et al. Nonlinear model predictive control based on ESN and PSO[J]. Control Engineering of China,2011,18(6):864-867.
    [9]
    于永兵. 基于改进ESN的混沌时间序列预测方法的研究[D]. 鞍山:辽宁科技大学,2012.
    [10]
    胡海峰,伦淑娴. 基于Leaky-ESN的光伏发电输出功率预测[J]. 电子设计工程,2016,24(17):15-17.

    HU Haifeng,LUN Shuxian. The output power foresting based on Leaky-ESN[J]. Electronic Design Engineering,2016,24(17):15-17.
    [11]
    吴佳东. 基于回声状态网络的网络流量预测研究[D]. 兰州:兰州大学,2016.
    [12]
    杨飞. 基于回声状态网络的交通流预测模型及其相关研究[D]. 北京:北京邮电大学,2012.
    [13]
    聂凤琴,许光泉,关维娟,等. 马氏距离判别模型在矿井突水水源判别中应用[J]. 地下水,2013,35(6):41-42.

    NIE Fengqin,XU Guangquan,GUAN Weijuan,et al. Application of Ma Distance discriminant model on water source identification of mine water inrush[J]. Ground Water,2013,35(6):41-42.
    [14]
    乔俊飞,李瑞祥,柴伟,等. 基于PSO-ESN神经网络的污水BOD预测[J]. 控制工程,2016,23(4):463-467.

    QIAO Junfei,LI Ruixiang,CHAI Wei,et al. Prediction of BOD based on PSO-ESN neural network[J]. Control Engineering of China,2016,23(4):463-467.
    [15]
    韩敏,任伟杰,许美玲. 一种基于L_1范数正则化的回声状态网络[J]. 自动化学报,2014,40(11):2428-2435.

    HAN Min,REN Weijie,XU Meiling. An improved echo state network via L1-norm regularization[J]. Acta Automatica Sinica, 2014,40(11):2428-2435.
    [16]
    范千,张宁. 改进的果蝇优化与Tikhonov正则化相结合的病态问题稳健解法[J]. 测绘学报,2016,45(6):670-676.

    FAN Qian,ZHANG Ning. Ill-conditioned problems robust solution of improved fruit fly optimization algorithm combining with Tikhonov regularization method[J]. Acta Geodaetica et Cartographica Sinica,2016,45(6):670-676.
    [17]
    阮百尧,葛为中. 奇异值分解法与阻尼最小二乘法的对比[J]. 物探化探计算技术,1997,19(1):47-49.

    RUAN Baiyao,GE Weizhong. Singular value decomposition method and damping least square solution[J]. Computing Techniques for Geophysical and Geochemical Exploration,1997, 19(1):47-49.
    [18]
    欧明,甄卫民,於晓,等. 一种基于截断奇异值分解正则化的电离层层析成像算法[J]. 电波科学学报,2014,29(2):345-352.

    OU Ming,ZHEN Weimin,YU Xiao,et al. A computerized ionospheric tomography algorithm based on TSVD regularization[J]. Chinese Journal of Radio Science,2014,29(2):345-352.
    [19]
    胡彬. 基于模型函数方法的正则化参数选取[D]. 抚州:东华理工大学,2012.
  • Cited by

    Periodical cited type(5)

    1. 施龙青,曲兴玥,韩进. 黄土梁峁地貌矿井水水质时空变异评估与关键控制因子水源识别. 煤田地质与勘探. 2023(02): 195-206 . 本站查看
    2. 毛志勇,崔鹏杰,黄春娟,韩榕月. KPCA-CS-SVM下的矿井突水水源判别模型. 辽宁工程技术大学学报(自然科学版). 2021(02): 104-111 .
    3. 姜子豪,胡友彪,琚棋定,周露,张淑莹. 矿井突水水源判别方法. 工矿自动化. 2020(04): 28-33 .
    4. 秋兴国,王瑞知,张卫国,张昭昭,张婧. 基于PCA-CRHJ模型的矿井突水水源判别. 工矿自动化. 2020(11): 65-71 .
    5. 毛志勇,黄春娟,路世昌,韩榕月. 基于KPCA-MPSO-ELM的矿井突水水源判别模型. 中国安全科学学报. 2018(08): 111-116 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (123) PDF downloads (10) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return