JIA Bingyi, JIN Xianglan, LIU Yuhui, WANG Xiangye. Optimal selection of favorable CBM blocks of Badaowan coal seams in Rumqi-Dahuangshan area[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(5): 54-57,65. DOI: 10.3969/j.issn.1001-1986.2017.05.010
Citation: JIA Bingyi, JIN Xianglan, LIU Yuhui, WANG Xiangye. Optimal selection of favorable CBM blocks of Badaowan coal seams in Rumqi-Dahuangshan area[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(5): 54-57,65. DOI: 10.3969/j.issn.1001-1986.2017.05.010

Optimal selection of favorable CBM blocks of Badaowan coal seams in Rumqi-Dahuangshan area

Funds: 

National Science and Technology Major Project(2011ZX05033-002)

More Information
  • Received Date: September 24, 2016
  • Published Date: October 24, 2017
  • Optional selection of favable CBM block is one of the important work in CBM exploration and development. The geologic condition of coalbed methane in Urumqi-Dahuangshan area is very complex. The reservoir conditions such as gas content and permeability of coal seam are obviously different. The study area is divided into 5 blocks. The geological structure complexity, thickness of coal seam, gas content, coal seam dip angle, gas bearing area, permeability and gas saturation are selected by using a combination method of analytic hierarchy process and fuzzy mathematics for block selection. The results show that Shuimo River-Sigong River block and Ganhezi River-Dahuangshan block are favorable areas, Sigong River-Ganhezi River block is the more favorable area, and Urumqi River block on the west and Urumqi River-Shuimo River block are the prospective areas.
  • [1]
    傅雪海,秦勇,韦重韬. 煤层气地质学[M]. 徐州:中国矿业大学出版社,2007.
    [2]
    李贵红. 鄂尔多斯盆地东缘煤层气有利区块优选[J]. 煤田地质与勘探,2015,43(2):28-32.

    LI Guihong. Selection of the favorable coalbed methane blocks in eastern Ordos basin[J]. Coal Geology & Exploration,2015,43(2):28-32.
    [3]
    孙钦平,孙斌,孙粉锦,等. 准噶尔盆地东南部低煤阶煤层气富集条件及主控因素[J]. 高校地质学报,2012,18(3):460-464.

    SUN Qinping,SUN Bin,SUN Fenjin,et al. Accumulation and geological controls of low-rank coalbed methane in southeastern Junggar basin[J]. Geological Journal of China Universities,2012,18(3):460-464.
    [4]
    王德利,李凤义,杨曙光. 准南煤田煤储层和围岩对煤层气聚集的影响分析[J]. 中国煤层气,2013,10(2):7-11.

    WANG Deli,LI Fengyi,YANG Shuguang. The influence analysis of coal reservoir and surrounding rock on CBM accumulation in Zhunnan coalfield[J]. China Coalbed Methane,2013,10(2):7-11.
    [5]
    杨曙光,邵洪文,周梓欣. 新疆准南煤田煤层气资源赋存特征及开发条件分析[C]//煤层气勘探开发理论与技术—2010年全国煤层气学术研讨会,2010:226-230.
    [6]
    崔思华,刘洪林,王勃,等. 准噶尔盆地低煤级煤层气成藏地质特征[J]. 现代地质,2007,21(4):719-724.

    CUI Sihua,LIU Honglin,WANG Bo,et al. Trapping characteristics of coalbed methane in low-rank coal of Junggar basin[J]. Geoscience,2007,21(4):719-724.
    [7]
    王屿涛,谢姝,刘全艳,等. 准噶尔盆地低阶煤煤层气资源及勘探潜力分析[J]. 新疆石油学院学报,2002,14(3):5-7.

    WANG Yutao,XIE Shu,LIU Quanyan,et al. Analysis of low rank CBM gas resources and exploration potential in Junggar basin[J]. Journal of Petroleum Educational Institute of Xinjiang,2002,14(3):5-7.
    [8]
    田继军,杨曙光. 准噶尔盆地南缘下-中侏罗统层序地层格架与聚煤规律[J]. 煤炭学报,2011,36(1):58-64.

    TIAN Jijun,YANG Shuguang. Sequence strata and coal accumulation of Lower and Middle Jurassic Formation from southern margin of Junggar basin,Sinkiang,China[J]. Journal of China Coal Society,2011,36(1):58-64.
    [9]
    贾秉义,晋香兰,李建武,等. 低煤级煤储层游离气含量计算—以准噶尔盆地东南缘为例[J]. 煤田地质与勘探,2015,43(2):33-36.

    JIA Bingyi,JIN Xianglan,LI Jianwu,et al. Calculation of free gas content of low rank coal reservoirs:A case study of the southeast margin of Junggar basin[J]. Coal Geology & Exploration,2015,43(2):33-36.
    [10]
    尹淮新,谈红梅,坛俊颖,等. 新疆低煤阶煤层气勘探选区评价标准的探讨[J]. 中国煤层气,2009,6(6):9-13.

    YIN Huaixin,TAN Hongmei,TAN Junying,et al. Discussion on criteria for evaluation of selected target areas in prospecting CBM in low rank coal in Xingjiang[J]. China Coalbed Methane,2009,6(6):9-13.
    [11]
    赵庆波,李贵中,孙粉锦,等. 煤层气地质选区评价理论与勘探技术[M]. 北京:石油工业出版社,2009.
    [12]
    陈晓智,汤达祯,许浩,等. 低、中煤阶煤层气地质选区评价体系[J]. 吉林大学学报(地球科学版),2012,42(增刊2):115-120.

    CHEN Xiaozhi,TANG Dazhen,XU Hao,et al. Geological evaluation system of potential coalbed methane exploration and development blocks with low and medium coal ranks[J]. Journal of Jilin University(Earth Science Edition),2012,42(S2):115-120.
    [13]
    张群. 国外煤层气储层数值模拟技术的现状及发展趋势[J].煤田地质与勘探,2004,32(增刊1):18-25.

    ZHANG Qun. Current situation and development trend of the numerical simulation technology of coalbed methane reservoir in foreign countries[J]. Coal Geology & Exploration,2004,32(S1):18-25.
    [14]
    张培河,张群,王宝玉,等. 煤层气可采性综合评价方法研究—以潘庄井田为例[J]. 煤田地质与勘探,2006,34(1):21-25.ZHANG Peihe,ZHANG Qun,WANG Baoyu,et al. Integrated
    [15]
    methods of CBM recoverability evaluation:A case study from Panzhuang mine[J]. Coal Geology & Exploration,2006,34(1):21-25.
    [15]
    叶建平,岳魏,秦勇,等. 中国煤层气聚集区带划分[J]. 天然气工业,1999,19(5):9-12.

    YE Jianping,YUE Wei,QIN Yong,et al. Division of coalbed gas accumulation regions and zones in China[J]. Natural Gas Industry,1999,19(5):9-12.
  • Related Articles

    [1]LI Shu, YANG Zeyuan, MA Xiongde, LIU Shengzu, FANG Chujing, ZHANG Aoqi. Influence of water yield property of Yan’an Formation aquifer on water yield of mines in southern Shenmu-Fugu mining area[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(6): 92-102. DOI: 10.12363/issn.1001-1986.22.11.0874
    [2]SHEN Xiaolong, LI Hao, WANG Wei, CHENG Zhouying. Q-p curve equation of geothermal well recharge test in the urban area of Mei County, western Guanzhong[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(6): 165-174. DOI: 10.12363/issn.1001-1986.21.09.0512
    [3]LANG Yuquan, CHEN Tongjun, MA Li, MA Guodong. Water content prediction of roof sandstone using AVO technology[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(3): 127-132. DOI: 10.3969/j.issn.1001-1986.2018.03.021
    [4]HUANG Huan, LIU Qisheng, JI Yadong. Prediction of mine water inflow through equal-dimension gray filling dynamic GM(1,1) model based on R/S analysis[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(6): 92-95,100. DOI: 10.3969/j.issn.1001-1986.2016.06.017
    [5]ZHANG Zhenyong. Application of TEM technique in detecting the water enrichment of strata[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(6): 109-113. DOI: 10.3969/j.issn.1001-1986.2015.06.023
    [6]LI Shuguang, CHENG Bingjie, YE Tairan, GAN Qigang, JIANG Lei, LIU Yun. Inverse Q filtering of post-stacking of converted PS-wave and its application[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(1): 64-67. DOI: 10.3969/j.issn.1001-1986.2012.01.015
    [7]ZHOU Zhusheng, CHEN Youliang. Generalized S-transform with variable-factor and its time-frequency filtering[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(6): 63-66,71. DOI: 10.3969/j.issn.1001-1986.2011.06.015
    [8]MA Jianqing, LI Qingchun, WANG Meiding. Stratigraphic absorption-compensation based on the generalized S-transform[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(4): 65-68. DOI: 10.3969/j.issn.1001-1986.2010.04.015
    [9]MAN Wei-shi, WANG Jin-guo, FU Jun-mei, SHEN-TU Jiang-min. The analysis of TEM signal in the S-domain[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(6): 68-71.
    [10]Ju Xinghua. THE NOISE ELIMINATION BY RADON TRANSFORM AND INVERSE Q FILTER IN SEISMIC DATA PROCESSING[J]. COAL GEOLOGY & EXPLORATION, 1996, 24(4): 42-45.

Catalog

    Article Metrics

    Article views (100) PDF downloads (13) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return