CHEN Shida, TANG Dazhen, GAO Lijun, XU Hao, ZHAO Junlong, TAO Shu. Control of effective stress on permeability in high-rank coal reservoirs[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 76-80. DOI: 10.3969/j.issn.1001-1986.2017.04.013
Citation: CHEN Shida, TANG Dazhen, GAO Lijun, XU Hao, ZHAO Junlong, TAO Shu. Control of effective stress on permeability in high-rank coal reservoirs[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 76-80. DOI: 10.3969/j.issn.1001-1986.2017.04.013

Control of effective stress on permeability in high-rank coal reservoirs

Funds: 

National Science and Technology Major Project(2016ZX05044-001)

More Information
  • Received Date: January 05, 2016
  • Published Date: August 24, 2017
  • In order to discuss the anisotropy of stress sensitivity of permeability in the high rank coal reservoir, five high-rank coal samples were measured under overburden pressure to reveal the control mechanism of effective stress. The coal mass has the highest permeability in the direction parallel to the face cleat and bedding plane by using 3.5 MPa to simulate the original formation pressure, while it has the lowest permeability in the direction perpendicular to the bedding planes. The coal permeability declines(or increase) in power function with the increase(or decline) of effective stress. The permeability damage/loss anisotropy indicates that in the direction parallel to the face cleat, coal mass has the highest stress sensitivity, and the stress sensitivity in different directions is controlled by the width of the crack and the direction of its distribution. High rank coal is of high density, poor development of pore and fracture, and it is very difficult to compress, the anisotropy of cleat compressibility is not obvious. With the increase of effective stress the cleat compressibility showed a decreasing trend. The essence of effective stress on permeability is that the reduction of the coal reservoir pore fracture volume results in the reduction of permeability and leads to larger irreversible damage of permeability in all directions.
  • [1]
    薛培,郑佩玉,徐文君,等. 有效应力对不同煤阶煤渗透率影响的差异性分析[J]. 科技导报,2015,33(2):69-73.

    XUE Pei,ZHENG Peiyu,XU Wenjun,et al. Influence of effective stress on permeability of different rank coals[J]. Science & Technology Review,2015,33(2):69-73.
    [2]
    季小凯,郭建斌,邢同菊,等. 煤系沉积岩应力-应变与应变-渗透率特征[J]. 煤田地质与勘探,2015,43(3):66-71.

    JI Xiaokai,GUO Jianbin,XING Tongju,et al. Characteristics of stress-strain and strain-permeability of coal-bearing sedimentary rocks[J]. Coal Geology & Exploration,2015,43(3):66-71.
    [3]
    常会珍,秦勇,王飞. 贵州珠藏向斜煤样孔隙结构的差异性及其对渗流能力的影响[J]. 高校地质学报,2012,18(3):544-548.

    CHANG Huizhen,QIN Yong,WANG Fei. Differences in of pore structure of coals and their impact on the permeability of coals from the Zhu-Zang syncline,Guizhou Province[J]. Geological Journal of China Universities,2012,18(3):544-548.
    [4]
    吕玉民,汤达祯,许浩. 韩城地区煤储层孔渗应力敏感性及其差异[J]. 煤田地质与勘探,2013,41(6):31-34.

    LYU Yumin,TANG Dazhen,XU Hao. Stress sensitivity of difference porosity and permeability in coal reservoirs in Hancheng CBM block[J]. Coal Geology & Exploration,2013,41(6):31-34.
    [5]
    赵俊龙,汤达祯,许浩,等. 欠饱和煤储层气水有效渗透率动态变化规律[J]. 辽宁工程技术大学学报(自然科学版),2014,33(8):1025-1030.

    ZHAO Junlong,TANG Dazhen,XU Hao,et al. Dynamic change law for gas-water effective permeability in undersaturated coal reservoirs[J]. Journal of Liaoning Technical University(Natural Science),2014,33(8):1025-1030.
    [6]
    李相臣,康毅力,罗平亚. 应力对煤岩裂缝宽度及渗透率的影响[J]. 煤田地质与勘探,2009,37(1):29-32.

    LI Xiangchen,KANG Yili,LUO Pingya. The effects of stress on fracture and permeability in coalbed[J]. Coal Geology & Exploration,2009,37(1):29-32.
    [7]
    许江,袁梅,李波波,等. 煤的变质程度、孔隙特征与渗透率关系的试验研究[J]. 岩石力学与工程学报,2012,31(4):681-687.

    XU Jiang,YUAN Mei,LI Bobo,et al. Experimental study of relationship between metamorphic grade,pore characteristic and permeability of coal[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(4):681-687.
    [8]
    傅雪海,李大华,秦勇,等. 煤基质收缩对渗透率影响的实验研究[J]. 中国矿业大学学报,2002,31(2):129-132.

    FU Xuehai,LI Dahua,QIN Yong,et al. Experimental research of influence of coal matrix shrinkage on permeability[J]. Journal of China University of Mining & Technology,2002,31(2):129-132.
    [9]
    郭春华,周文,孙晗森,等. 考虑应力敏感性的煤层气井排采特征[J]. 煤田地质与勘探,2011,39(5):27-30.

    GUO Chunhua,ZHOU Wen,SUN Hansen,et al. The relationship between stress sensitivity and production of coalbed methane wells[J]. Coal Geology & Exploration,2011,39(5):27-30.
    [10]
    汪吉林,秦勇,傅雪海. 多因素叠加作用下煤储层渗透率的动态变化规律[J]. 煤炭学报,2012,37(8):1348-1353.

    WANG Jilin,QIN Yong,FU Xuehai. Dynamic changes laws of the coal reservoirs permeability under the superimposition of multi influential factors[J]. Journal of China Coal Society,2012,37(8):1348-1353.
    [11]
    裴柏林. 煤层气储层三维渗透率变化规律实验研究[J]. 煤田地质与勘探,2013,41(4):26-30.

    PEI Bailin. Experimental research on variation pattern of 3D permeability in coalbed methane reservoir[J]. Coal Geology & Exploration,2013,41(4):26-30.
    [12]
    LI Yong,TANG Dazhen,XU Hao,et al. Experimental research on coal permeability:The roles of effective stress and gas slippage[J]. Journal of Natural Gas Science & Engineering,2014,21:481-488.
    [13]
    PALMER I,MANSOORI J. How permeability depends on stress and pore pressure in coalbeds:A new model[J]. SPE Reservoir Evaluation & Engineering,1996,1(6):539-544.
    [14]
    SHI Jiquan,DURUCAN S. A model for changes in coalbed permeability during primary and enhanced methane recov-ery[J]. SPE Reservoir Evaluation & Engineering,2005,8(4):291-299.
    [15]
    CUI Xiaojun,BUSTIN R M,CHIKATAMARLA L. Adsorption-induced coal swelling and stress:Implications for methane production and acid gas sequestration into coal seams[J]. Journal of Geophysical Research Atmospheres,2007,112(10):1-8.
    [16]
    LI Junqian,LIU Dameng,YAO Yanbin,et al. Control of CO2 permeability change in different rank coals during pressure depletion:An experimental study[J]. Energy & Fuels,2014,28(2):987-996.
    [17]
    孟召平,侯泉林. 煤储层应力敏感性及影响因素的试验分析[J]. 煤炭学报,2012,37(3):430-437.

    MENG Zhaoping,HOU Quanlin. Experimental research on stress sensitivity of coal reservoir and its influencing fac-tors[J]. Journal of China Coal Society,2012,37(3):430-437.
    [18]
    中国石油天然气集团公司. 覆压下岩石孔隙度和渗透率测定方法:SY/T 6385-1999[S]. 北京:国家石油和化学工业局,1999.
    [19]
    韩德馨,杨起. 中国煤田地质学[M]. 北京:煤炭工业出版社,1979.
    [20]
    SZWILSKI A B. Determination of the anisotropic elastic moduli of coal[J]. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts,1984,21(1):3-12.
    [21]
    ZHANG Zetian,ZHANG Ru,XIE Heping,et al. The relationships among stress,effective porosity and permeability of coal considering the distribution of natural fractures:Theoretical and experimental analyses[J]. Environmental Earth Sciences,2015:73.
  • Cited by

    Periodical cited type(6)

    1. 王永龙,郭佳宽,余在江,杜康,孙玉宁. 松软煤层钻进钻杆减重降阻机制及应用研究. 煤田地质与勘探. 2024(05): 174-182 . 本站查看
    2. 陈超,陈天柱,张马军,王常委. 孤岛工作面碎软煤层跟管护孔钻进工艺研究. 工矿自动化. 2023(01): 73-79 .
    3. 李冬生. 复合钻进近水平超长钻柱动力学特性研究. 煤矿机械. 2023(04): 72-74 .
    4. 刘伟吉,冯嘉豪,汪洋,祝效华,李枝林. 深层页岩气水平井钻柱动态摩阻扭矩分析. 石油机械. 2023(08): 18-25 .
    5. 姜磊. 大盘区瓦斯抽采超长定向钻孔施工关键技术措施. 煤炭技术. 2023(10): 137-141 .
    6. 许超,姜磊,陈盼,张迪. 煤矿井下大盘区瓦斯抽采定向钻进技术与装备. 煤田地质与勘探. 2022(04): 147-152 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (139) PDF downloads (21) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return