ZHAO Baofeng. Evaluation on drainage degree in roof based on AHP-matter element extension model[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 82-86. DOI: 10.3969/j.issn.1001-1986.2017.03.015
Citation: ZHAO Baofeng. Evaluation on drainage degree in roof based on AHP-matter element extension model[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 82-86. DOI: 10.3969/j.issn.1001-1986.2017.03.015

Evaluation on drainage degree in roof based on AHP-matter element extension model

Funds: 

National Key Research and Development Plan(2016YFC0501104, 2016YFC0600708)

More Information
  • Received Date: July 31, 2016
  • Published Date: June 24, 2017
  • In order to evaluate the drainage degree of roof of working face scientifically, the elements such as the predicted water inflow and the observed drainage value in working face were analyzed, the evaluation index system of water drainage degree in roof was established and corresponding grade standard of evaluation was divided. AHP was used to evaluate the water drainage degree in roof in 5 working faces with relatively complicated hydrogeological conditions. The evaluation results showed that the water drainage in roof was good, and safe extraction has been realized in the working faces, the actual situation was consistent with the evaluation results. AHP-matter element extension model can be used to evaluate water drainage degree in roof, and used as reference basis for evaluation of the hydrogeological conditions in working face before mining.
  • [1]
    虎维岳,田干. 我国煤矿水害类型及其防治对策[J]. 煤炭科学技术,2010,38(1):92-96.

    HU Weiyue,TIAN Gan. Mine water disaster type and prevention and control countermeasure in China[J]. Coal Science and Technology, 2010,38(1):92-96.
    [2]
    虎维岳. 矿山水害防治理论与方法[M]. 北京:煤炭工业出版社,2005:112.
    [3]
    吕伟,胡荣华. 基于AHP法的侵蚀离子对水泥土桩强度影响研究[J]. 煤田地质与勘探,2014,42(3):65-67.

    LYU Wei,HU Ronghua. Influence of erosive ion on the strength of cement-soil pile based on analytic hierarchy process (AHP)[J]. Coal Geology & Exploration,2014,42(3):65-67.
    [4]
    于雯琪,钱家忠,马雷,等. 基于GIS和AHP的谢桥煤矿13-1煤顶板突水危险性评价[J]. 煤田地质与勘探,2016, 44(1):69-73.

    YU Wenqi,QIAN Jiazhong,MA Lei,et al. The water inrush risk assessment of roof of seam 13-1 in Xieqiao mine based on GIS and AHP[J]. Coal Geology & Exploration,2016,44(1):69-73.
    [5]
    刘少军,张京红,何政伟,等. 改进的物元可拓模型在台风灾害预评估中的应用[J]. 自然灾害学报,2012,21(2):135-141.

    LIU Shaojun, ZHANG Jinghong, HE Zhengwei, et al. Application of improved matter-element extension model to typhoon disaster pre-assessment[J]. Journal of Natural Disasters, 2012,21(2):135-141.
    [6]
    刘维,吕品,刘晓洁,等. 基于熵权物元可拓模型的化工工艺本质安全评价[J]. 中国安全生产科学技术,2013,9(3):150-156.

    LIU Wei,LYU Pin,LIU Xiaojie,et al. Inherent safety evaluation of chemical process based on entropy-weight and matter-element model[J]. Journal of Safety Science and Technology,2013,9(3):150-156.
    [7]
    朱爽,林黎阳,吴衍,等. 基于物元可拓法的湿地生态系统健康评价——以衡水湖国家湿地自然保护区为例[J]. 安全与环境学报,2016,16(1):348-353.

    ZHU Shuang,LIN Liyang,WU Yan,et al. Application of the matter-element extension method to the ecosystem health assessment of the wetland-A case study on Hengshui lake wetland national natural reserve[J]. Journal of Safety and Environment, 2016,16(1):348-353.
    [8]
    贺言言,孙世国. 基于物元可拓模型边坡稳定性综合评价[J]. 煤矿安全,2014,45(3):206-208.

    HE Yanyan,SUN Shiguo. Comprehensive evaluation of slope stability based on matter element and extension model[J]. Safety in Coal Mine,2014,45(3):206-208.
    [9]
    郑自宽,孙亚玲. 物元可拓法在黄土高原水源地水质评价中的应用[J]. 人民黄河,2016,38(1):67-70.

    ZHENG Zikuan,SUN Yaling. Application of matter element analysis method to water quality evaluation of the loess plateau water source region[J]. Yellow River,2016,38(1):67-70.
    [10]
    蔡文,杨春燕,林伟初. 可拓工程方法[M]. 北京:科学出版社,2000:207-209.
    [11]
    陈守煜,伏广涛,周惠成,等. 含水层脆弱性模糊分析评价模型与方法[J]. 水利学报,2002(7):23-30.

    CHEN Shouyu,FU Guangtao,ZHOU Huicheng,et al. Fuzzy analysis model and methodology for aquifer vulnerability evaluation[J]. Journal of Hydraulic Engineering,2002(7):23-30.
    [12]
    王正林. 精通MATLAB科学计算[M]. 北京:电子工业出版社,2009.
  • Related Articles

    [1]WU Peng, HU Weiqiang, LI Yangbing, MA Litao, LI Yong, ZHAO Fei, NIU Yanwei, CHEN Jianqi, LI Panpan, LIU Zaizhen, LI Chenchen, CAO Di, LIU Cheng. Geochemical characteristics and influencing factors of deep coalbed methane in the Linxing-Shenfu block[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(5): 56-66. DOI: 10.12363/issn.1001-1986.23.10.0632
    [2]ZHANG Cong, LI Mengxi, HU Qiujia, JIA Huimin, LI Kexin, WANG Qi, YANG Ruiqiang. Moderately deep coalbed methane reservoirs in the southern Qinshui Basin: Characteristics and technical strategies for exploitation[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(2): 122-133. DOI: 10.12363/issn.1001-1986.23.10.0624
    [3]ZHANG Cong, LI Mengxi, FENG Shuren, HU Qiujia, QIAO Maopo, WU Dingquan, YU Jiasheng, LI Kexin. Reservoir properties and gas production difference between No.15 coal and No.3 coal in Zhengzhuang Block, southern Qinshui Basin[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(9): 145-153. DOI: 10.12363/issn.1001-1986.21.12.0816
    [4]HE Huan, HUANG Xinying, HUANG Zaixing, ZHANG Qian, CHEN Zihao, ZHAO Han, REN Hengxing, HUANG Guanhua. Effect of kaolin on biogenic coalbed methane production and the response of microbial community[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(6): 1-10. DOI: 10.12363/issn.1001-1986.21.08.0463
    [5]SU Xianbo, WANG Lufei, ZHAO Weizhong, XIA Daping, ZHOU Yixuan, WANG Qian. Physical simulation of in-situ microbial methanation in coal reservoirs with the participation of supercritical CO2[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(3): 119-126. DOI: 10.12363/issn.1001-1986.21.11.0684
    [6]WANG Xiangye, SUN Baoping. Geochemical characteristics and their origin of CBM in Xingxian area, Ordos basin[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 156-164,173. DOI: 10.3969/j.issn.1001-1986.2020.04.022
    [7]YI Yongxiang, TANG Shuheng, ZHANG Songhang, YAN Xinlu, WANG Kaifeng, DANG Feng. Analysis on the type of reservoir pressure drop and drainage control of coalbed methane well in the southern block of Shizhuang[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 118-126. DOI: 10.3969/j.issn.1001-1986.2019.05.016
    [8]FENG Shuren, ZHANG Cong, ZHANG Jinxiao, LIU Zhong, CUI Xinrui, CHAO Weiwei. Gas-water differentiation characteristics of CBM reservoirs in Xiadian block, Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 129-134. DOI: 10.3969/j.issn.1001-1986.2018.05.020
    [9]XU Chao, CHEN Bingyu, WU Dun, DING Dianshi, XIA Yuanyuan, LIU Guijian. Distribution characteristics of isotope carbon and its geological origin in coal & gas carbon of Qidong coal mine, Huaibei coalfield[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 54-58. DOI: 10.3969/j.issn.1001-1986.2017.03.010
    [10]XU Gang, LI Shugang, DING Yang. Classification of coalbed methane enrichment units in Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(6): 22-26. DOI: 10.3969/j.issn.1001-1986.2013.06.006
  • Cited by

    Periodical cited type(10)

    1. 王勃,徐凤银,金雪,王立龙,屈争辉,张文胜,李志,刘国伟,张艺腾,史鸣剑. 沁水盆地郑庄区块煤层气井产出水化学成分演变及其高产响应. 石油学报. 2024(11): 1638-1651 .
    2. 王阳,向杰,秦勇,陈尚斌,朱炎铭,黄曼莉,石莹. 阳泉-晋城矿区关闭煤矿煤层气资源特征及抽采模式. 煤炭科学技术. 2024(12): 165-179 .
    3. 简阔,傅雪海,夏大平,冯睿智,李咪,吉小峰. 我国次生生物成因煤层气研究进展. 煤矿安全. 2023(04): 11-21 .
    4. 梁运培,李左媛,朱拴成,陈强,王鑫,秦朝中. 关闭/废弃煤矿甲烷排放研究现状及减排对策. 煤炭学报. 2023(04): 1645-1660 .
    5. 华明国,田林,张燕,李佳,曹永恒. 潞安矿区煤层气井产出水地球化学特征及意义. 煤田地质与勘探. 2022(02): 65-71 . 本站查看
    6. 吴金刚,毛俊睿. 中国废弃煤矿瓦斯资源评价与抽采利用研究进展. 煤矿安全. 2021(07): 162-169 .
    7. 刘建华,王生维,张晓飞. 顺煤层井煤屑录井法在废弃矿区二次开发中的应用研究. 煤炭技术. 2021(09): 11-14 .
    8. 李忠城,吴建光,王建中,吴翔,卢国军. 沁水盆地南部15号煤层和顶板K_2灰岩水文地球化学演化特征. 煤田地质与勘探. 2020(03): 75-80 . 本站查看
    9. 马凯,马钱钱,史永涛. 远红外作用下不同含水率煤体吸附/解吸能量变化规律. 煤田地质与勘探. 2020(03): 86-92 . 本站查看
    10. 王相业,孙保平. 鄂尔多斯盆地兴县地区煤层气地球化学特征及成因. 煤田地质与勘探. 2020(04): 156-164+173 . 本站查看

    Other cited types(9)

Catalog

    Article Metrics

    Article views (103) PDF downloads (8) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return