MAO Xiaoxiao, ZHAO Difei, YANG Yujuan, LU Chengang, WANG Xuelian, GUO Yinghai. Fractal characteristics of pore structure in high rank coals from Xinjing coal mine, Yangquan[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 59-66. DOI: 10.3969/j.issn.1001-1986.2017.03.011
Citation: MAO Xiaoxiao, ZHAO Difei, YANG Yujuan, LU Chengang, WANG Xuelian, GUO Yinghai. Fractal characteristics of pore structure in high rank coals from Xinjing coal mine, Yangquan[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 59-66. DOI: 10.3969/j.issn.1001-1986.2017.03.011

Fractal characteristics of pore structure in high rank coals from Xinjing coal mine, Yangquan

Funds: 

National Basic Research Program of China(973 Program) (2012CB214702)

More Information
  • Received Date: September 25, 2016
  • Published Date: June 24, 2017
  • Based on mercury intrusive data of high rank coal samples from Xinjing coal mine, fractal geometry model was built to describe the pore structure quantitatively. The results show that pores in coal samples mainly exist in nanoscale, the distribution of pore diameter, pore volume and specific surface area are also of nanoscale. The pore diameter over 65 nm are significantly fractal, the fractal dimension varies from 2.89 to 2.99, and the variation of volume increment are phase-based, indicating complicated pore structure. There is a linear relationship between specific surface area increment and pore diameter below 65 nm (which are hardly fractal) in double logarithm coordinates, indicating a rather simple pore structure. Pores are classified into two major types:diffusion pores(<65 nm) and seeping pore(>65 nm) and 6 secondary types based on the fractal characteristics and laws of gas motion. Fractal dimensions are negatively related to median radius and total volume of pores, while positively related to pore volume and pore specific surface area in pores over 65 nm. The fractal dimension can be utilized in CBM reservoir exploration as a comprehensive index for its rather complete characterization ability.
  • [1]
    MEYERS R A. Coal structure[M]. New York:Academic Press, 1982:78-83.
    [2]
    傅雪海,秦勇,姜波,等. 高煤级煤储层煤层气产能"瓶颈" 问题研究[J]. 地质论评,2004,50(5):507-513.

    FU Xuehai,QIN Yong,JIANG Bo,et al. Study on the "bottle-neck" problem of coalbed methane productivity of high-rank coal reservoirs[J]. Geological Review,2004,50(5):507-513.
    [3]
    张宪国,张涛,林承焰. 基于孔隙分形特征的低渗透储层孔隙结构评价[J]. 岩性油气藏,2013,25(6):40-45.

    ZHANG Xianguo,ZHANG Tao,LIN Chengyan. Pore structure evaluation of low permeability reservoir based on pore fractal features[J]. Lithologic Reservoirs,2013,25(6):40-45.
    [4]
    张晓辉,要惠芳,李伟,等. 韩城矿区构造煤纳米级孔隙结构的分形特征[J]. 煤田地质与勘探,2014,42(5):4-8.

    ZHANG Xiaohui,YAO Huifang,LI Wei,et al. Fractal characteristics of nano-pore structure in tectonically deformed coals in Hancheng mining area[J]. Coal Geology & Exploration,2014, 42(5):4-8.
    [5]
    KATZ A J,THOMPSON A H. Fractal sandstone pores:Implications for conductivity and pore formation[J]. Physical Review Letters,1985,54(12):1325-1328.
    [6]
    YAO Yanbin,LIU Dameng,CAI Yidong,et al. Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography[J]. Science China Earth Sciences D,2010,53(6):854-862.
    [7]
    RADLINSKI A P,MASTALERZ M,HINDE A L,et al. Application of SAXS and SANS in evaluation of porosity,pore size distribution and surface area of coal[J]. International Journal of Coal Geology,2004,59:245-271.
    [8]
    时宇,齐亚东,杨正明,等. 基于恒速压汞法的低渗透储层分形研究[J]. 油气地质与采收率,2009,16(2):88-90.

    SHI Yu,QI Yadong,YANG Zhengming,et al. Fractal study of low permeability reservoir based on constant-rate mercury injection[J]. Petroleum Geology and Recovery Efficiency,2009, 16(2):88-90.
    [9]
    胡琳,朱炎铭,陈尚斌,等. 蜀南双河龙马溪组页岩孔隙结构的分形特征[J]. 新疆石油地质,2013,34(1):79-82.

    HU Lin,ZHU Yanming,CHEN Shangbin,et al. Fractal characteristics of shale pore structure of Longmaxi Formation in Shuanghe area in southern Sichuan[J]. Xinjiang Petroleum Geology,2013,34(1):79-82.
    [10]
    王秀娟,要惠芳,李伟,等. 基于热力学模型的煤孔隙结构分形表征[J]. 煤田地质与勘探,2014,42(6):20-23.

    WANG Xiujuan,YAO Huifang,LI Wei,et al. Fractal characterization of pore structure in coals based on thermodynamics model[J]. Coal Geology & Exploration,2014,42(6):20-23.
    [11]
    MANDELBROT B B. How long is the coast of Britain[J]. Science,1967,156(3775):636-638.
    [12]
    FRICSEN W I,MIKULE R J. Fractal dimensions of coal parti-cles[J]. Journal of Colloid and Interface Science,1987,20(1):263-271.
    [13]
    孙波,王魁军,张兴华. 煤的分形孔隙结构特征的研究[J]. 煤矿安全,1999,30(1):38-40.

    SUN Bo,WANG Kuijun,ZHANG Xinghua. Research into the fractal character of structure in coal[J]. Safety in Coal Mines, 1999,30(1):38-40.
    [14]
    傅雪海,秦勇,薛秀谦. 分形理论在煤储层物性研究中的应用[J]. 煤,2000,9(4):1-3.

    FU Xuehai,QIN Yong,XUE Xiuqian. Application of fractal theory on physical properties in coal reservoirs[J]. Coal,2000, 9(4):1-3.
    [15]
    FU Xuehai,QIN Yong,ZHANG Wanhong,et al. Fractal classification and natural classification of coal pore structure based on migration of coalbed methane[J]. Chinese Science Bulletin,2005,50(S1):66-71.
    [16]
    赵爱红,廖毅,唐修义. 煤的孔隙结构分形定量研究[J]. 煤炭学报,1998,23(4):105-108.

    ZHAO Aihong,LIAO Yi,TANG Xiuyi. Quantitative analysis of pore structure by fractal analysis[J]. Journal of China Coal Society,1998,23(4):105-108.
    [17]
    傅雪海,秦勇,张万红,等. 基于煤层气运移的煤孔隙分形分类及自然分类研究[J]. 科学通报,2005,50(增刊1):51-55.

    FU Xuehai,QIN Yong,ZHANG Wanhong,et al. The study of coal pore fractal classification and natural classification based on CBM migration[J]. Chinese Science Bulletin,2005,50(S1):51-55.
    [18]
    王文峰,徐磊,傅雪海. 应用分形理论研究煤孔隙结构[J]. 中国煤田地质,2002,14(2):27-28.

    WANG Wenfeng,XU Lei,FU Xuehai. Study on pore texture of coal with fractal theory[J]. Coal Geology of China,2002,14(2):27-28.
    [19]
    霍多特B B. 煤与瓦斯突出[M]. 宋世钊,王佑安,译. 北京:中国工业出版社,1966:27-30.
    [20]
    秦勇,徐志伟,张井. 高煤级煤孔径结构的自然分类及其应用[J]. 煤炭学报,1995,20(3):266-271.

    QIN Yong,XU Zhiwei,ZHANG Jing. Natural classification of the high-rank coal pore structure and its application[J]. Journal of China Coal Society,1995,20(3):266-271.
    [21]
    王华龙,柴振华,郭照立. 致密多孔介质中气体渗流的格子Boltzmann模拟[J]. 计算物理,2009,26(3):389-395.

    WANG Hualong,CHAI Zhenhua,GUO Zhaoli. Lattice boltzmann simulation of gas transfusion in compact porous media[J]. Chinese Journal of Computational Physics, 2009, 26(3):389-395.
    [22]
    吴克柳,李相方,陈掌星. 页岩气纳米孔气体传输模型[J]. 石油学报,2015,36(7):837-848.

    WU Keliu,LI Xiangfang,CHEN Zhangxing. A model for gas transport through nanopores of shale gas reservoirs[J]. Acta Petrolei Sinica,2015,36(7):837-848.
    [23]
    邹明俊,韦重韬,张苗,等. 基于压汞实验的煤孔隙系统分形分类[J]. 煤炭工程,2013,45(10):112-114.

    ZOU Mingjun,WEI Zhongtao,ZHANG Miao,et al. Fractal classification of coal pore system based on mercury injection experiment[J]. Coal Engineering,2013,45(10):112-114.
    [24]
    赵迪斐,郭英海,解德录,等. 基于低温氮吸附实验的页岩储层孔隙分形特征[J]. 东北石油大学学报,2014,38(6):100-108.

    ZHAO Difei,GUO Yinghai,XIE Delu,et al. Fractal characteristics of shale reservoir pores based on nitrogen adsorption[J]. Journal of Northeast Petroleum University,2014,38(6):100-108.
    [25]
    解德录,郭英海,赵迪斐. 基于低温氮实验的页岩吸附孔分形特征[J]. 煤炭学报,2014,39(12):2466-2472.

    XIE Delu,GUO Yinghai,ZHAO Difei. Fractal characteristics of adsorption pore of shale based on low temperature nitrogen experiment[J]. Journal of China Coal Society,2014,39(12):2466-2472.
    [26]
    宋晓夏,唐跃刚,李伟,等. 中梁山南矿构造煤吸附孔分形特征[J]. 煤炭学报,2013,38(1):134-139.

    SONG Xiaoxia,TANG Yuegang,LI Wei,et al. Fractal characteristics of adsorption pores of tectonic coal from Zhongliangshan southern coalmine[J]. Journal of China Coal Society,2013, 38(1):134-139.
    [27]
    张玉涛,王德明,仲晓星. 煤孔隙分形特征及其随温度的变化规律[J]. 煤炭科学技术,2007,35(11):73-76.

    ZHANG Yutao,WANG Deming,ZHONG Xiaoxing. Features of fissure sharp in coal borehole and variation law with temperature[J]. Coal Science and Technology,2007,35(11):73-76.

Catalog

    Article Metrics

    Article views (73) PDF downloads (7) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return