REN Ziqiang, WU Jiwen, PENG Tao, GUI Xiang, ZHANG Haichao. Radiogenic heat production of magmatic rock of coal measure strata based on natural gamma-ray logging in Zhuji mine field of Huainan coal field[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 49-53,58. DOI: 10.3969/j.issn.1001-1986.2017.03.009
Citation: REN Ziqiang, WU Jiwen, PENG Tao, GUI Xiang, ZHANG Haichao. Radiogenic heat production of magmatic rock of coal measure strata based on natural gamma-ray logging in Zhuji mine field of Huainan coal field[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 49-53,58. DOI: 10.3969/j.issn.1001-1986.2017.03.009

Radiogenic heat production of magmatic rock of coal measure strata based on natural gamma-ray logging in Zhuji mine field of Huainan coal field

Funds: 

The General Program of the National Natural Science Foundation of China(41272278)

More Information
  • Received Date: January 10, 2016
  • Published Date: June 24, 2017
  • Zhuji mine field was taken as research object to study the characteristics of heat generation rate of magmatic rock of coal measure strata in Huainan coal field and its influence on geothermal field, on the basis of the 6 208 natural gamma logging values in 36 boreholes, the average values of heat generation rate of different rocks and their standard deviation were calculated by using the relation of natural gamma(GR) and heat generation rate(A). The results show that GR values of sedimentary rocks in the coal measures is in descending order:mudstone (83.83 API), sandstone (62.23 API) and coal (34.32 API). And the GR value of magmatic rock is 103.89 API, much higher than that of sedimentary rocks. The heat generation rate of magmatic rocks is the biggest as well, its average is 1.63 μW/m3, about 3 times higher than that of coal, but because of the influence of staged intrusion of magmatic rock, its standard deviation is bigger. In general, the contribution of the rock radiogenic heat in coal-bearing srata was not big for terrestrial heat flow in Zhuji mine field, but the high generation rate of magmatic rock changed a lot the thermal structure of strata.
  • [1]
    郭平业. 我国深井地温场特征及热害控制模式研究[D]. 北京:中国矿业大学,2009.
    [2]
    徐胜平,彭涛,吴基文,等. 两淮煤田煤系岩石热导率特征及其对地温场的影响[J]. 煤田地质与勘探,2014,42(6):76-81.

    XU Shengping,PENG Tao,WU Jiwen,et al. The characteristics of rock thermal conductivity of coal measure strata and their influence on geothermal field in Huainan-Huaibei coalfield[J]. Coal Geology & Exploration,2014,42(6):76-81.
    [3]
    苏永荣,张启国. 淮南煤田潘谢矿区地温状况初步分析[J]. 安徽地质,2000,10(2):124-129.

    SU Yongrong,ZHANG Qiguo. A preliminary analysis of the geotemperature situation of the Panxie mine in the Huainan coalfield[J]. Geology of Anhui,2000,10(2):124-129.
    [4]
    许光泉,王伟宁,张海涛. 淮南矿区深部热害分析及热水资源化研究[J]. 中国煤炭,2009,35(10):114-132.

    XU Guangquan,WANG Weining,ZHANG Haitao. The deep thermal damage analysis in Huainan mining area and research on resource utilization of geothermal water[J]. China Coal,2009, 35(10):114-132.
    [5]
    任自强,彭涛,沈书豪,等.淮南煤田现今地温场特征[J]. 高校地质学报,2015,21(1):147-154.

    REN Ziqiang,PENG Tao,SHEN Shuhao,et al. The distribution characteristics of current geothermal field in Huainan coalfield[J]. Geological Journal of China Universities,2015, 21(1):147-154.
    [6]
    徐胜平. 两淮煤田地温场分布规律及其控制模式研究[D]. 淮南:安徽理工大学,2014.
    [7]
    李红阳,朱耀武,易继承. 淮南矿区地温变化规律及其异常因素分析[J]. 煤矿安全,2007,38(11):68-71.

    LI Hongyang,ZHU Yaowu,YI Jicheng. The geothermal change rule and analysis of abnormal factors in Huainan mining area[J]. Safety in Coal Mines,2007,38(11):68-71.
    [8]
    谭静强,琚宜文,侯泉林,等. 淮北煤田宿临矿区现今地温场分布特征及其影响因素[J]. 地球物理学报,2009,52(3):732-739.

    TAN Jingqiang,JU Yiwen,HOU Quanlin,et al. Distribution characteristics and influence factors of present geo-temperature field in Sulin mine area,Huaibei coalfield[J]. Chinese Journal of Geophysics,2009,52(3):732-739.
    [9]
    王康,姚多喜,鲁海峰. 淮南潘三矿区地温分布规律及影响因素分析[J]. 中国煤炭地质,2014,26(5):38-40.

    WANG Kang,YAO Duoxi,LU Haifeng. Geotherm distribution pattern and impacting factor analysis in Panji No.3 coal mine, Huainan[J]. Coal Geology of China,2014,26(5):38-40.
    [10]
    饶松,朱传庆,廖宗宝,等.利用自然伽马测井计算准噶尔盆地沉积层生热率及其热流贡献[J].地球物理学报,2014, 57(5):1554-1567.

    RAO Song,ZHU Chuanqing,LIAO Zongbao,et al. Heat production rate and heat flow contribution of the sedimentary formation in Junggar basin,Northwest China[J]. Chinese Journal of Geophysics,2014,57(5):1554-1567.
    [11]
    王桂梁,曹代勇,姜波,等. 华北南部的逆冲推覆、伸展滑覆与重力滑动构造[M]. 徐州:中国矿业大学出版社, 1992:5-14.
    [12]
    琚宜文,卫明明,薛传东. 华北盆山演化对深部煤与煤层气赋存的制约[J]. 中国矿业大学学报,2011,40(3):390-398.

    JU Yiwen,WEI Mingming,XUE Chuandong. Control of basin-mountain evolution on the occurrence of deep coal and coal bed methane in North China[J]. Journal of China University of Mining & Technology,2011,40(3):390-398.
    [13]
    陈龙生. 朱集东矿井开拓方式设计合理性分析[J]. 煤炭工程, 2011(10):8-9.

    CHEN Longsheng. The rationality of the design of development way in Zhujidong coal mine[J]. Coal Engineering,2011(10):8-9.
    [13]
    陈健. 淮南煤田煤地球化学对岩浆侵入的响应研究[D]. 合肥:中国科学技术大学,2013.
    [14]
    蒋法文,刘亮,陈健. 淮南煤田潘三矿岩浆岩演化特征研究[J]. 中国煤炭地质,2014,26(5):18-20.

    JIANG Fawen,LIU Liang,CHEN Jian. A study on magmatic lithologic evolution features in Panji No.3 coal mine,Huainan coalfield[J]. Coal Geology of China,2014,26(5):18-20.
    [14]
    杨梅. 淮南煤田(以朱集矿为例)侵入岩和煤中稀土元素地球化学特征[D]. 合肥:中国科学技术大学,2012.
    [15]
    韩吟文. 地球化学[M]. 北京:地质出版社,2003:214.
    [16]
    邱楠生. 沉积盆地热体制研究的理论与应用[M]. 北京:石油工业出版社,2004:22-24.
    [17]
    RYBACH L. Radioactive heat production in rocks and its relation to other petrophysical parameters[J]. Pure and Applied Geophysics,1976,114(2):309-317.
    [18]
    RYBACH L. Amount and significance of radioactive heat sources in sediments[J]. Collection Colloques et Séminares, 1986,44:311-322.
    [19]
    BÜCKER C,RYBACH L. A simple method to determine heat production from gamma-ray logs[J]. Marine and Petroleum Geology,1996,3(4):373-375.
    [20]
    骆淼,潘和平,赵永刚,等. 中国大陆科学钻探主孔自然放射性测井及其解释[J]. 地球科学-中国地质大学学报,2008, 33(5):661-671.

    LUO Miao,PAN Heping,ZHAO Yonggang,et al. Natural radioactivity logs and interpretation from the CCSD main hole[J]. Earth Science-Journal of China University of Geosciences, 2008,33(5):661-671.
    [21]
    NORDEN B,FORSTER A. Thermal conductivity and radiogenic heat production of sedimentary and magmatic rocks in the northeast German basin[J]. AAPG Bulletin,2006,90(6):939-962.
    [22]
    王良书,李成,杨春. 塔里木盆地岩石层热结构特征[J]. 地球物理学报,1996,39(6):794-803.

    WANG Liangshu,LI Cheng,YANG Chun. The lithospheric thermal structure beneath tarim basin,western China[J]. Chinese Journal of Geophysics,1996,39(6):794-803.
    [23]
    黄作华. 煤田地球物理勘探[M]. 北京:煤炭工业出版社, 1992:47-51.
    [24]
    谢景娜,罗新荣. 丁集煤矿井下热流测定分析[J]. 煤矿安全, 2012,43(2):128-132.

    XIE Jingna,LUO Xinrong. Determination and analysis of underground heat in Dingji mine[J]. Safety in Coal Mines,2012, 43(2):128-132.
    [25]
    BÜCKER C J,JARRARD R D,WONIK T,et al. Downhole temperature,radiogenic heat production,and heat flow from the CRP-3 drillhole, Victoria Land basin, Antarctica[J]. Terra Antartica,2001,8(3):151-159.
    [26]
    楚泽涵. 地球物理测井方法与原理[M]. 北京:石油工业出版社,2008:50-52.
    [27]
    邦特巴思G. 地热学导论[M]. 北京:地震出版社,1988:15-21.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return