LI Mingpei, SHAO Longyi, DONG Daxiao, LU Jing, LI Jingqin. Clay mineral characteristics and its geological significance in argillaceous rock in eastern margin of Ordos basin[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(2): 39-44. DOI: 10.3969/j.issn.1001-1986.2017.02.007
Citation: LI Mingpei, SHAO Longyi, DONG Daxiao, LU Jing, LI Jingqin. Clay mineral characteristics and its geological significance in argillaceous rock in eastern margin of Ordos basin[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(2): 39-44. DOI: 10.3969/j.issn.1001-1986.2017.02.007

Clay mineral characteristics and its geological significance in argillaceous rock in eastern margin of Ordos basin

Funds: 

Projects of China Geological Survey(1212011220794)

More Information
  • Received Date: September 25, 2016
  • Published Date: April 24, 2017
  • In order to study the paleoclimatic characteristics of the Carboniferous-Permian and its relationship with coal formation in eastern margin of Ordos basin, XRD diffraction analysis and SEM methods are used to study the composition of clay minerals and its geological significance. The results show that the mixed layer of kaolinite, illite and smectite are the major clay minerals in argillaceous rock, followed by illite and chlorite. The vertical distribution of clay minerals in argillaceous rock reflects that kaolinite in Shanxi Formation of Qiaotou section, Palougou section, upper of Chengjiazhuang section has high content. And the bottom of Taiyuan Formation of Qiaotou section, the upper of Taiyuan Formation and the middle of Benxi Formation in Chengjiazhuang section have high content of kaolinite too. Illite has high content in Shanxi Formation of each section. Chlorite has higher content in the middle and the upper of Shanxi Formation and lower content in Taiyuan Formation. Under the SEM, clay minerals are in regular shape and do not have obvious erosion marks. Illite crystallinity is 0.42°△2θ~0.63°△2θ, with an average of 0.47°△2θ, which has good crystallization, I/S interstratified ratio has an average value of 25.1%. According to the characteristics of authigenic clay minerals, the overall paleoclimate was warm and humid, short-term dry-cold climate existed in early Taiyuan Formation and middle-late Shanxi Formation. Paleoclimate and sedimentary environments reflected mutually the change process of coal accumulation, and are the key factors to control coal accumulation in the study area.
  • [1]
    邵龙义,张鹏飞. 湘中下石炭统黏土矿物组合特征[J]. 沉积学报,1992,10(4):87-93.

    SHAO Longyi,ZHANG Pengfei. Clay mineral assemblages in the Lower Carboniferous of central Hunan,south China[J]. Acta Sedimentologica Sinica,1992,10(4):87-93.
    [2]
    何志平,邵龙义,刘永福,等. 河北南部石炭-二叠纪古气候演化特征[J]. 沉积学报,2005,23(3):454-460.

    HE Zhiping,SHAO Longyi,LIU Yongfu,et al. Evolution of the paleoclimates during Permo-Carboniferous in the southern Hebei[J]. Acta Sedimentologica Sinica,2005,23(3):454-460.
    [3]
    邵龙义,何志平,罗文林,等. 河北南部石炭-二叠纪煤系土壤特征[J]. 西安石油大学学报(自然科学版),2005,20(3):6-10.

    SHAO Longyi,HE Zhiping,LUO Wenlin,et al. Characteristic of the palaeosoils in the coal measures of Carboniferous and Permian in southern Hebei,China[J]. Journal of Xi'an Shiyou University(Natural Science Edition),2005,20(3):6-10.
    [4]
    罗忠,邵龙义,姚光华,等. 滇东黔西上二叠统含煤岩系泥岩黏土矿物组成及环境意义[J]. 古地理学报,2008,10(3):297-304.

    LUO Zhong,SHAO Longyi,YAO Guanghua,et al. Mudstones in the Upper Permian coal-bearing series in eastern Yunnan and western Guizhou:Clay minerals composition and their environmental significance[J]. Journal of Palaeogeography,2008,10(3):297-304.
    [5]
    王辉,贺小龙,范玉海,等. 韩城矿区南中深部隐伏逆冲构造的发现及其地质意义[J]. 煤田地质与勘探,2016,44(6):1-7.

    WANG Hui,HE Xiaolong,FAN Yuhai,et al. Discovery and geological significance of concealed thrust-fault at medium and big depth in the south of Hancheng mining area[J]. Coal Geology & Exploration,2016,44(6):1-7.
    [6]
    桂学智. 河东煤田晚古生代聚煤规律与煤炭资源评价[M]. 太原:山西科学技术出版社,1993:110-145.
    [7]
    鲁静,邵龙义,孙斌,等. 鄂尔多斯盆地东缘石炭-二叠纪煤系层序-古地理与聚煤作用[J]. 煤炭学报,2012,37(5):747-754.

    LU Jing,SHAO Longyi,SUN Bin,et al. Sequence-paleog-eography and coal accumulation of Carboniferous-Permian coal measures in the eastern Ordos basin[J]. Journal of China Coal Society,2012,37(5):747-754.
    [8]
    赵杏媛,张有瑜. 黏土矿物与粘土矿物分析[M]. 北京:海洋出版社,1990:85-123.
    [9]
    SINGER A. The paleoclimatic interpretation of clay minerals in sediment-a review[J]. Earth-Science Reviews,1984,21(4):251-293.
    [10]
    王明振,吴朝东,王陆新,等. 准噶尔盆地南缘侏罗系泥岩黏土矿物组合及地球化学特征[J]. 矿物岩石地球化学通报, 2014,33(4):421-430.

    WANG Mingzhen,WU Chaodong,WANG Luxin,et al. Jurassic clay mineral assambleges in mudstones and geochemical characteristics in the southern part of Junggar basin[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2014,33(4):421-430.
    [11]
    KISCH H J. Illite crystallinity:Recommendation on sample preparation,X-ray diffraction settings,and interlabratory samples[J]. Journal of Metamorphic Geology,1991,9(6):665-670.
    [12]
    WARR L N,RICE A H N. Interlaboratory standardization and calibration of day mineral crystallinity and crystallite size data[J]. Journal of Metamorphic Geology,1994,12(2):141-152.
    [13]
    LAMY F,KLUMP J,HEBBELN D,et al. Late Quaternary rapid climate change in northern Chile[J]. Terra Nova,2000,12(1):8-13.
    [14]
    陈涛,王欢,张祖青,等. 黏土矿物对古气候指示作用浅析[J]. 岩石矿物学杂志,2003,22(4):416-420.

    CHEN Tao,WANG Huan,ZHANG Zuqing,et al. Clay minerals as indicators of paleoclimate[J]. Acta Petrologica et Mineralgica,2003,22(4):416-420.
    [15]
    谢渊,王剑,李令喜,等. 鄂尔多斯盆地白垩系黏土矿物的分布特征及其沉积-成岩环境意义[J]. 地质通报,2010,29(1):93-104.

    XIE Yuan,WANG Jian,LI Lingxi,et al. Distribution of the Cretaceous clay minerals in Ordos basin,China and its implication to sedimentary and diagenetic environment[J]. Geological Bulletin of China,2010,29(1):93-104.
    [16]
    陈世悦,刘焕杰. 华北晚古生代海平面变化研究[J]. 岩相古地理,1995,15(5):14-21.

    CHEN Shiyue,LIU Huanjie. Sea-level changes in north China during the Late Palaeozoic[J]. Lithofacies Paleogeography, 1995,15(5):14-21.
    [17]
    李增学,王明镇,余继峰,等. 鄂尔多斯盆地晚古生代含煤地层层序地层与海侵成煤特点[J]. 沉积学报,2006,24(6):834-840.

    LI Zengxue,WANG Mingzhen,YU Jifeng,et al. Sequence stratigraphy of Late Paleozoic coal-bearing measures and the transgressive coal-formed features in Ordos basin[J]. Acta Sedimentologica Sinica,2006,24(6):834-840.
    [18]
    吕大炜,李增学,刘海燕,等. 华北晚古生代海平面变化及其层序地层响应[J]. 中国地质,2009,36(5):1079-1086.

    LYU Dawei,LI Zengxue,LIU Haiyan,et al. The sea-level change and its response to the Late Paleozoic sequence stratigraphy in north China[J]. Geology in China,2009,36(5):1079-1086.
    [19]
    BOHACS K,SUTER J. Sequence stratigraphic distribution of coaly rocks:Fundamental controls and paralic example[J]. American Association of Petroleum Geologists Bulletin,1997,81(10):1612-1639.
  • Related Articles

    [1]HAO Shijun, CHU Zhiwei, LI Quanxin, FANG Jun, CHEN Long, LIU Jianlin. Research status and development trend of near-bit MWD in underground coal mine[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(9): 10-19. DOI: 10.12363/issn.1001-1986.23.05.0278
    [2]SHAO Chun, HU Chuang, XU Lin, CHEN Minghua, LONG Xiaoping. Influencing factors of increasing the signal strength of the EM-MWD by applying insulation coating outside the casing[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(10): 165-170. DOI: 10.12363/issn.1001-1986.22.01.0065
    [3]WANG Xiaobo. Factors affecting the attitude accuracy of wireless electromagnetic wave MWD system[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 258-264. DOI: 10.3969/j.issn.1001-1986.2021.06.031
    [4]QIAO Meiying, WANG Bo, XIAO Xuejun, XU Chengkuan, YAN Shuhao. Joint correction method of errors of MWD inclinometer in underground coal mine[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 202-208. DOI: 10.3969/j.issn.1001-1986.2020.02.030
    [5]JIANG Zeyu, XIE Hongbo, WEN Guangchao, HUANG Xianrui. Design and application of electromagnetic radio MWD system of drilling track in coal mine[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 156-161. DOI: 10.3969/j.issn.1001-1986.2017.03.029
    [6]WANG Chengli, CHIKHOTKIN V F, LU Chunhua. Error compensation of measurement while drilling inclinometer[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(4): 147-152. DOI: 10.3969/j.issn.1001-1986.2016.04.028
    [7]WANG Lan. Application of signal relay in MWD[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(1): 82-83. DOI: 10.3969/j.issn.1001-1986.2013.01.017
    [8]SUN Rongjun. Application of home MWD directional drilling system in Ningxia Rujigou mine[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(4): 77-80. DOI: 10.3969/j.issn.1001-1986.2011.04.020
    [9]SHAO Yangtao, YAO Aiguo, ZHANG Meng, LI Yunsheng. Electromagnetic wave bi-directional signal transmission of MWD[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(3): 69-72. DOI: 10.3969/j.issn.1001-1986.2010.03.016
    [10]LI Xiao, YAO Aiguo, LI Yunsheng. Transmission characteristics of new electromagnetic-measurement while drilling system[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(2): 76-78. DOI: 10.3969/j.issn.1001-1986.2010.02.019
  • Cited by

    Periodical cited type(11)

    1. 张海涛,许光泉,陈晓晴,李旭,翟晓荣,李洋,李子璇. 我国闭坑煤矿矿井水水质演化研究进展与展望. 煤炭学报. 2024(09): 3944-3959 .
    2. 张雪丽,荀守奎. 闭坑矿井老空水位回升规律研究. 煤. 2023(04): 14-17 .
    3. 耿恒毅,翟晓荣. 基于Visual Modflow的刘东煤矿闭坑水位回升预测. 绿色科技. 2023(10): 121-125 .
    4. 郝红俊,翟晓荣,胡儒,庞瑶,黄楷,吴基文. 闭坑矿井积水对邻近生产矿井的影响. 工矿自动化. 2022(04): 60-65 .
    5. 杨岗. 分布式计算在闭坑矿井汇水过程的应用. 中国煤炭地质. 2021(12): 26-30+64 .
    6. 张文斌,吴基文,翟晓荣,胡儒,毕尧山,王广涛. 闭坑矿井矿界煤柱采动损伤及其安全性评价. 工矿自动化. 2020(02): 39-44 .
    7. 吴玉川,李磊. 废弃煤矿积水对相邻煤矿的威胁分析. 科学技术创新. 2020(18): 154-156 .
    8. 吴玉川,王东晟,孙冰,李磊. 受闭坑影响的矿井水流场演变研究. 内蒙古煤炭经济. 2020(02): 7-8 .
    9. 才向军,韩瑞刚,孟璐,杨俊文. 赵各庄矿闭坑地下水安全警戒水位控制研究. 煤炭工程. 2020(09): 116-121 .
    10. 许延春,盖秋凯,黄磊,禹云雷,沈星宇,庞龙. 闭坑矿井积水对相邻生产矿井防治水的影响. 煤炭科学技术. 2020(09): 96-101 .
    11. 杨高峰,卫金善,杨新亮,窦文武. 晋城矿区凤凰山矿周边闭坑矿井水害分析及治理. 煤田地质与勘探. 2019(S1): 14-19 . 本站查看

    Other cited types(11)

Catalog

    Article Metrics

    Article views (159) PDF downloads (22) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return