SUN Lixia, YANG Chun, WANG Yun, ZHANG Zhi. A commentary on multi-component seismic technology in the 84th SEG annual meeting[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(2): 96-105. DOI: 10.3969/j.issn.1001-1986.2016.02.018
Citation: SUN Lixia, YANG Chun, WANG Yun, ZHANG Zhi. A commentary on multi-component seismic technology in the 84th SEG annual meeting[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(2): 96-105. DOI: 10.3969/j.issn.1001-1986.2016.02.018

A commentary on multi-component seismic technology in the 84th SEG annual meeting

Funds: 

National Natural Science Foundation Project of China(41425017, 41574126, 41504107)

More Information
  • Received Date: September 24, 2015
  • Available Online: October 22, 2021
  • Through analysis of papers about multi-component seismic technology presented in the 84th SEG annual meeting, it is easy to find out that prestack time migration is still the major method used in multi-component migration imaging. Compared with the method based on S-wave refraction, static correction method using the radial-trace domain transform for ray path consistency can get the real reflection interface, the application of the full waveform inversion in 4D seismics has attractive perspective. Based on the advantages of stability and accuracy of the fluid factor of longitudinal wave, it is hopeful to produce practical effect. The development characteristics of the multi-component seismics can be summarized as "a lot of highlight spots and one emphasis", the highlight spots include rock physical experiment and numerical simulation of shale, aerosol mechanism of low frequency attenuation of seismic wave, research on the characteristics six-component vector wave field, research on response characteristics of multi-group and multi-scale fracture system. The emphasis for ocean multi-component seismic technology is to suppress ghost wave and radial wave, to remove multiple wave, and to increase the signal-to-noise ratio of P wave.
  • Related Articles

    [1]LIU Shilei, ZHANG Ying, YUE Jianhua. Application of Simulink in transient process analysis of transient electromagnetic field[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 209-215. DOI: 10.3969/j.issn.1001-1986.2020.02.031
    [2]WANG Yu, SU Shengrui, YU Hongming. Yu Wang Bian slope stability analysis based on coupled analysis method[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(5): 50-54. DOI: 10.3969/j.issn.1001-1986.2010.05.011
    [3]LI Yuanxiong. Study on reliability of slope under the random earthquake effect[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(3): 51-54. DOI: 10.3969/j.issn.1001-1986.2010.03.012
    [4]CAO Yun, XIAO Wu. Application of strength reduction and gravity increase method in three dimensional slope stability analysis[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(3): 46-50. DOI: 10.3969/j.issn.1001-1986.2010.03.011
    [5]MOU Sheng-yuan, WANG Zheng-zhong. Hoek-Brown failure criterion superiority for rocky slop stability analysis[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(3): 53-56. DOI: 10.3969/j.issn.1001-1986.2009.03.013
    [6]LI Rong-wei, HOU En-ke. Orthogonality analysis of sensibility on factors of slope stability in opencast coal mine[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(1): 52-56.
    [7]FAN Wen, DENG Long-sheng, BAI Xiao-yu, YU Mao-hong. Application of unified strength theories to the stability of slope analysis[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(1): 63-66.
    [8]WANG Gui-rong. Stability analysis on segment k207+690~830 slope of Huangling-Yan’an highway[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(6): 40-43.
    [9]WANG Bin, YANG Chang-bin, ZHANG Shi, WANG Liang-qing. Stability analysis of a reservoir slope with the method of FEM strength reduction[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(4): 56-59.
    [10]DU Wen-tang. Reliability analysis of coal pillar for flood prevention[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(1): 34-36.

Catalog

    Article Metrics

    Article views (89) PDF downloads (5) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return