WEI Yingchun, ZHANG Qiang, WANG Anmin, REN Huikang, YUAN Yuan, CAO Daiyong. The influence of the salinity of groundwater in coal measures on low rank coalbed methane in the south margin of Junggar basin[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(1): 31-37. DOI: 10.3969/j.issn.1001-1986.2016.01.006
Citation: WEI Yingchun, ZHANG Qiang, WANG Anmin, REN Huikang, YUAN Yuan, CAO Daiyong. The influence of the salinity of groundwater in coal measures on low rank coalbed methane in the south margin of Junggar basin[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(1): 31-37. DOI: 10.3969/j.issn.1001-1986.2016.01.006

The influence of the salinity of groundwater in coal measures on low rank coalbed methane in the south margin of Junggar basin

Funds: 

Investigation and Evaluation Project for Strategic Petroleum Target Area Selection in China(1211302108025-2)

More Information
  • Received Date: January 04, 2015
  • Available Online: October 22, 2021
  • Groundwater salinity of coal-series is one of important factors affecting the generation, migration and accumulation of low rank coal bed gas. Taking south of Junggar Basin in Xinjiang as the study area, it is divided into eight hydrogeological units. Distribution characteristics of groundwater salinity of coal-series and the influence on methanogen's living in the study area are researched. Taking 1000 m depth as example, methane solubility of groundwater in coal-series in each hydrogeological unit was estimated. Capacity for transporting methane was analysed and assessed. Through the analysis of distribution of groundwater salinity, the chloride concentration of groundwater in coal-series and regional geological structures, the flow direction of groundwater in coal-series can be found. Taking Liuhuanggou hydrogeological unit as example relationship between salinity and enrichment of coalbed methane is discussed. The Research results show that the salinity distribution has the characteristics of north-south sub-zone and east-west subsection. Houxia hydrogeological unit, south of Manas river-Hutubi River hydrogeological unit, south of Liuhuanggou hydrogeological unit, west of Fukang hydrogeological unit promote the survival and methane generation of methanogens. Capacity for transporting methane of Houxia hydrogeological unit is strong. The runoff of surface water can influence the flow direction of groundwater. The center of high salinity and depression of low water level is the accumulation area of low-rank coal-bed methane in Liuhuanggou hydrogeological unit.
  • Related Articles

    [1]HUANG Qisong, XU Bo, FENG Junjun, LIN Xiaofei, CHENG Jiulong, PENG Jun. Failure depths of stope floors under dynamic loading induced by roof breaking[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(12): 13-24. DOI: 10.12363/issn.1001-1986.23.12.0822
    [2]HUANG Qisong, XU Bo, FENG Junjun, LIN Xiaofei, CHENG Jiulong, PENG Jun. Failure depths of stope floors under dynamic loading induced by roof breaking[J]. COAL GEOLOGY & EXPLORATION.
    [3]LI Bizhi, HAO Shijun, LIU Mingjun, ZHANG Qiang, BAI Gang, MO Haitao. Numerical simulation of safe distance through roadway drilling under dynamic load of large diameter rescue well[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(2): 260-266. DOI: 10.3969/j.issn.1001-1986.2021.02.033
    [4]SONG Weihua, DI Chunlei, DENG Zhaorui. Supporting technology of roadway crossing fractured zone of fault under dynamic and static load[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(6): 135-143. DOI: 10.3969/j.issn.1001-1986.2019.06.021
    [5]LIU Chunhua, LIU Xinfu, ZHOU Chao, QI Yaoguang, ZHANG Shousen. Dynamometer card of sucker rod pumps in coalbed methane wells[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(5): 38-43. DOI: 10.3969/j.issn.1001-1986.2014.05.008
    [6]WAN Zhansheng, YANG Zhe, WANG Jiading. Experimental study on dynamic properties of intact loess under train vibrating load[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(2): 47-51. DOI: 10.3969/j.issn.1001-1986.2011.02.011
    [7]LIU Xin-fu, QI Yao-guang, LIU Chun-hua. Calculating method on static horsehead load of water drainage and gas production equipment about beam pump for CBM wells[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(2): 75-78.
    [8]GAO Cheng-lei, LING Jian-ming. Numerical simulation of loading test on composite foundation with single rigid pile[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(2): 40-42.
    [9]FU Qun-he. The influencing factors of composite foundation’s bearing capacity by loading test[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(2): 37-40.
    [10]HUANG Qing-xiang. Simulating test on damage regularities of thick sandy soil layer and load distribution on key roof block in shallow coal seams[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(6): 22-25.
  • Cited by

    Periodical cited type(14)

    1. 黄庆享,王雨凡,杜君武,郭强,范东林,王生彪,高锦龙. 浅埋大断面运输顺槽锚索替代单体超前加强支护研究. 西安科技大学学报. 2025(01): 12-25 .
    2. 王亮. 小回沟矿2204工作面运输巷变形特征与优化支护技术分析. 煤. 2024(06): 95-97 .
    3. 王凤翔. 掘进巷道过断层破碎带联合支护技术研究. 山西化工. 2024(05): 197-198 .
    4. 张运国,魏恒一. 承压含水层上巷道掘进过断层安全性分析与评价. 山东煤炭科技. 2024(06): 118-122 .
    5. 刘春记. 回风巷过断层破碎带围岩控制技术研究. 煤炭与化工. 2024(06): 45-48 .
    6. 张新蕾. 基于岩体力学参数的巷道锚杆支护应力数值模拟. 粉煤灰综合利用. 2023(02): 39-43 .
    7. 王丹. 深部过断层巷道围岩支护技术研究. 山西能源学院学报. 2023(02): 13-15 .
    8. 邵东阁. 回采巷道掘进过含水断层施工及支护技术研究. 山西能源学院学报. 2023(02): 7-9 .
    9. 张文杰,何满潮,王炯,马资敏,程满江,牛韶坤. 逆断层影响下无煤柱自成巷矿压规律及围岩控制. 煤田地质与勘探. 2023(05): 1-10 . 本站查看
    10. 刘云鹤. 42202工作面皮带巷过F_215逆断层技术实践. 机械管理开发. 2021(01): 176-178 .
    11. 李夕兵,宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望. 煤炭学报. 2021(03): 846-866 .
    12. 吴建红. 复杂地质条件下掘进巷道支护参数优化研究及应用. 煤矿现代化. 2021(03): 10-12 .
    13. 丁万奇,马振乾,祖自银,谢红飞,杨威,陈川. 基于分形维数的巷道围岩裂隙演化规律研究. 煤田地质与勘探. 2021(03): 167-174 . 本站查看
    14. 苏朋. 巷道掘进过断层破碎带支护技术研究. 机械管理开发. 2021(10): 193-194 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (101) PDF downloads (11) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return