XU Shengping, WANG Xuan, YUN Xiaoming, WANG Hongzhi. Exquisite interpretation on gas storage characteristic of coal and rock stratum by logging parameters of coal field[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(5): 100-102,107. DOI: 10.3969/j.issn.1001-1986.2015.05.023
Citation: XU Shengping, WANG Xuan, YUN Xiaoming, WANG Hongzhi. Exquisite interpretation on gas storage characteristic of coal and rock stratum by logging parameters of coal field[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(5): 100-102,107. DOI: 10.3969/j.issn.1001-1986.2015.05.023

Exquisite interpretation on gas storage characteristic of coal and rock stratum by logging parameters of coal field

More Information
  • Received Date: September 19, 2014
  • Available Online: October 21, 2021
  • Coalfield logging curve carries a great amount of geological information, and certain correlation exits among logging parameters, mechamical properties, the characteristics of gas storage and watery property of seam coal.Through the process of digitalization and standardization of logging curves, and based on negative correlation between coal-bed gas content and the parameters of natural radioactivity, and postive correlation between apparent resistivity and parameters of artificial resistivity, we have confirmed the combined parameters based on natural radioactivity, apparent resistivity, artificial resistivity, then built the relation between the gas content and the composite parameters, what's more we calculated and evaluated the coal-bed gas content of a seam in the study area with the defined parameters. The final result showed that the predicted distribution of coal-bed gas content better accorded with actual discovered distribution of coal-bed gas content.
  • Related Articles

    [1]HU Zhazha, ZHANG Xun, JIN Yi, GONG Linxian, HUANG Wenhui, REN Jianji, Norbert Klitzsch. A method for intelligent information extraction of coal fractures based on µCT and deep learning[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(2): 55-66. DOI: 10.12363/issn.1001-1986.24.09.0609
    [2]HU Zhazha, ZHANG Xun, JIN Yi, GONG Linxian, HUANG Wenhui, REN Jianji, Norbert Klitzsch. Intelligent coal fracture extraction method using μCT and deep learning[J]. COAL GEOLOGY & EXPLORATION.
    [3]CHEN Dongdong, WANG Jianli, JIA Bingyi, XI Jie. High-efficiency regional gas drainage model after hydraulic fracturing of comb-shaped long boreholes in the roof of broken soft and low permeability coal seam[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(8): 29-36. DOI: 10.12363/issn.1001-1986.22.03.0195
    [4]GUO Chaoqi, ZHAO Jizhan, LI Xiaojian, ZHANG Jingfei, WU Shengli, CHEN Dongdong, HUANG Xingli, LI Baojun. Technology and application of high efficiency gas extraction by directional long borehole hydraulic fracturing in coal seams of medium hardness and low permeability[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(6): 103-108,115. DOI: 10.3969/j.issn.1001-1986.2020.06.014
    [5]ZHAO Rui, FAN Tao, LI Yuteng, WANG Jikuang, MA Yuan, WANG Bingchun, LIU Lei, FANG Zhe. Application of borehole transient electromagnetic detection in the test of hydraulic fracturing effect[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 41-45. DOI: 10.3969/j.issn.1001-1986.2020.04.006
    [6]WANG Zhirong, YANG Jie, CHEN Lingxia, GUO Zhiwei. Productivity prediction of hypotonic CBM test well in Jiaozuo mining area under hydraulic fracturing[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 70-76. DOI: 10.3969/j.issn.1001-1986.2019.03.012
    [7]YAN Zhiming. Hydraulic fracturing technology for permeability improvement through underground long borehole along coal seam[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 45-48. DOI: 10.3969/j.issn.1001-1986.2017.03.008
    [8]LI Xiangchen, CHEN Defei, KANG Yili, MENG Xiangjuan. Characterization of pores and fractures of coal based on CT scan[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(5): 58-62,70. DOI: 10.3969/j.issn.1001-1986.2016.05.011
    [9]ZHANG Shuangbin, SU Xianbo, GUO Hongyu. Experimental optimization of proppant for hydraulic fracturing in coal reservoir[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(1): 51-55. DOI: 10.3969/j.issn.1001-1986.2016.01.010
    [10]ZHANG Hong, XU Ju-zhen, YANG Hong-bin, WANG Rui-xia, HE Zi-jiang. Evaluation and study on coal reservoir fracture system in Heshun area[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(4): 27-29.
  • Cited by

    Periodical cited type(9)

    1. 齐治虎,姬玉平,王迪,徐影,李亚辉,刘文强,刘均荣. 填料水泥导热性能实验及对U型地热井取热影响的数值模拟研究. 能源与环保. 2024(02): 70-76 .
    2. 韩元红,贾国圣,张廷会,张育平,薛宇泽,金立文. 地热浅埋孔回填材料中砂粒结构对导热系数的影响. 科学技术与工程. 2023(15): 6599-6606 .
    3. 张丰琰,李立鑫,代晓光,董子良,韩丽丽,王博. 地热井保温水泥导热系数影响因素研究. 太阳能学报. 2023(09): 493-502 .
    4. 杜渊博,葛勇. 水泥石导热系数的计算模型. 硅酸盐学报. 2022(02): 466-472 .
    5. 杨雨,汪启龙,杨东,瞿勇,张浩,王凯鹏. 导热填料对地热井固井材料性能及结构的影响. 钻采工艺. 2022(01): 59-64 .
    6. 陶宇龙,赵凯. 试论分级固井技术在“取热不取水”地热井施工中的应用. 工程建设与设计. 2022(07): 180-182 .
    7. 雷燕子,杨永健,汪启龙,田烨. 温度对高导热固井材料性能及结构的影响研究. 山西建筑. 2022(16): 100-103 .
    8. 贾海梁,朱子贤,周阳,孙强. 砂-重晶石粉填料导热性能与传热机制研究. 煤田地质与勘探. 2022(11): 162-173 . 本站查看
    9. 张丰琰,李立鑫. 地热井固井水泥石传热性能研究现状及展望. 钻探工程. 2021(12): 54-64 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (69) PDF downloads (9) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return