XU Yang, YAN Changhong, JIANG Yuping, XU Baotian. Effect of slip surface shape on active earth pressure upon retaining wall[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(4): 69-74. DOI: 10.3969/j.issn.1001-1986.2015.04.015
Citation: XU Yang, YAN Changhong, JIANG Yuping, XU Baotian. Effect of slip surface shape on active earth pressure upon retaining wall[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(4): 69-74. DOI: 10.3969/j.issn.1001-1986.2015.04.015

Effect of slip surface shape on active earth pressure upon retaining wall

More Information
  • Received Date: February 15, 2014
  • Available Online: October 21, 2021
  • Based on the plastic limit analysis theory, the calculation formulas of active earth pressure for retaining wall were derived at the linear and logarithmic spiral slip pattern respectively. And the features of active earth pressure between the plane slip surface and logarithmic spiral slip surface were also compared through the calculation examples. The linear slip surface is considered as a special case of the logarithmic spiral slip surface the point of resultant force of active earth pressure for linear slip surface was determined by the combination of the two calculation formulas. With the increase of slip surface curvature, the point of resultant force of active earth pressure gradually moves up, the value of active earth pressure slightly increases but there is significant increase in the moment of the wall toe. The parameters of the retaining wall were analyzed to study its influence on the point of resultant force of active earth pressure for linear slip surface. The point of resultant force moves up with the increase of the internal friction angle of backfilled soil, the inclination of the retaining wall, the inclination of backfilled soil; and it moves down with the increase of wall-soil friction angle, the ratio of cohesion and the product of wall height and soil bulk density. The result shows that the point of resultant force lies about 0.2 to 0.4 times of the wall height. The results of the study have significant references for how to select slip surface shape to calculate active earth pressure on retaining wall.
  • Related Articles

    [1]CHEN Denghong, PANG Ning, NIE Wen, FENG Juqiang, KAN Jiliang, ZHANG Jinjing. Classification-based point cloud denoising and 3D reconstruction of roadways[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(5): 1-11. DOI: 10.12363/issn.1001-1986.24.10.0655
    [2]CHEN Denghong, PANG Ning, NIE Wen, FENG Juqiang, KAN Jiliang, ZHANG Jinjing. Classification denoising and 3D reconstruction of roadway point clouds[J]. COAL GEOLOGY & EXPLORATION.
    [3]ZHANG Ningyuan, YAO Suping. Nanopore structure and surface roughness in brittle tectonically deformed coals explored by atomic force microscopy[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(5): 32-42. DOI: 10.12363/issn.1001-1986.21.09.0500
    [4]ZHANG Jian, LI Zhiqing. Calculation and strength distribution of Rankine earth pressure on inclined surface[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(1): 58-62,66. DOI: 10.3969/j.issn.1001-1986.2013.01.012
    [5]LI Tianjun, YAN Taining, FANG Jun. The influence of dynamic head on axis force[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(6): 79-80. DOI: 10.3969/j.issn.1001-1986.2010.06.017
    [6]XIONG Zheng, ZHOU Juan, WU Fa-quan. Wang-Yu algorithm of non-circular critical slip surface for soil slop[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(4): 50-53,56. DOI: 10.3969/j.issn.1001-1986.2009.04.013
    [7]WU Ming, XIA Tang-dai, XU Jun-ping, SUN Miao-miao. Nonlinear passive earth pressure[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(2): 29-31,35.
    [8]WANG Zhan-feng, HAN Bao-shan, ZHAO Ji-zhan, LIU Li-hong. Sensitive index of coal and gas outburst point prediction at Sangshuping Coal Mine[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(5): 20-22.
    [9]ZHAO Jun-feng, LIU Chi-yang, WANG Xiao-mei. The factors influencing the measurement results of vitrinite reflectance[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(6): 15-18.
    [10]ZHU Guo-wei, PENG Su-ping, WANG Huai-xiu, WANG He-ling. An instrument to test the bolting force in no-destructive inspecting[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(6): 54-57.
  • Cited by

    Periodical cited type(12)

    1. 郭晓娇,王雷,姚仙洲,李旭,张林科,王晓双. 深部煤岩地质特征及煤层气富集主控地质因素——以鄂尔多斯盆地东部M区为例. 石油实验地质. 2025(01): 17-26 .
    2. 桑树勋,郑司建,刘世奇,周效志,韩思杰,皇凡生,刘统,代旭光. 煤系气及深部煤层气高效勘探开发若干研究进展. 中国矿业大学学报. 2025(01): 1-25 .
    3. 吴嘉伟,汤韦,祝彦贺,王存武,田永净,訾敬玉,杨江浩,时贤. 鄂尔多斯盆地东北缘神府区块南部8+9号煤层地应力评价方法与应用. 石油实验地质. 2025(01): 27-42 .
    4. 何希鹏,肖翠,高玉巧,李鑫,郭涛,蔡潇. 鄂尔多斯盆地延川南煤层气田地质特征及勘探开发关键技术. 煤田地质与勘探. 2025(03): 54-71 . 本站查看
    5. 林伟强,丛彭,王红,魏子琛,杨云天,么志强,曲丽丽,马立民,王方鲁. 深层煤层气水平井地质导向技术应用与探讨——以鄂尔多斯盆地神木气田X区块为例. 油气藏评价与开发. 2025(02): 300-309+323 .
    6. 康毅力,邵俊华,刘嘉榕,陈明君,游利军,陈雪妮,曹望坤. 深部致密煤藏适度就地气化可行性评价方法及应用. 油气藏评价与开发. 2025(02): 237-249 .
    7. 李国欣,张水昌,何海清,何新兴,赵喆,牛小兵,熊先钺,赵群,郭绪杰,侯雨庭,张雷,梁坤,段晓文,赵振宇. 煤岩气:概念、内涵与分类标准. 石油勘探与开发. 2024(04): 783-795 .
    8. 李雪彬,金力新,陈超峰,俞天喜,向英杰,易多. 深层煤岩气水平井压裂关键技术——以准噶尔盆地白家海地区侏罗系为例. 油气藏评价与开发. 2024(04): 629-637 .
    9. 牛小兵,张辉,王怀厂,虎建玲,吴陈君,赵伟波,潘博. 鄂尔多斯盆地中、东部石炭系本溪组煤储层纵向非均质性特征及成因——以M172井为例. 石油与天然气地质. 2024(06): 1577-1589 .
    10. 蔡益栋,李倩,肖帆,刘大锰,邱峰. 深部煤-岩组合体力学特征及裂隙扩展规律——以沁水盆地武乡区块为例. 石油与天然气地质. 2024(06): 1686-1704 .
    11. 李亚辉. 鄂尔多斯盆地大牛地气田深层中煤阶煤层气勘探实践及产能新突破. 石油与天然气地质. 2024(06): 1555-1566 .
    12. 赵石虎,刘曾勤,申宝剑,罗兵,陈刚,陈新军,张嘉琪,万俊雨,刘子驿,刘友祥. 鄂尔多斯盆地东北部斜坡区深层煤层气地质特征与勘探潜力. 石油与天然气地质. 2024(06): 1628-1639 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (33) PDF downloads (3) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return