Volume 42 Issue 4
Oct.  2021
Turn off MathJax
Article Contents
ZHANG Jifeng, FENG Bing, SHANG Leilei. Recognition and correction of static shift for MT based on wavelets analysis[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(4): 77-81. DOI: 10.3969/j.issn.1001-1986.2014.04.017
Citation: ZHANG Jifeng, FENG Bing, SHANG Leilei. Recognition and correction of static shift for MT based on wavelets analysis[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(4): 77-81. DOI: 10.3969/j.issn.1001-1986.2014.04.017

Recognition and correction of static shift for MT based on wavelets analysis

More Information
  • Received Date: March 21, 2013
  • Available Online: October 26, 2021
  • In magnetotelluric sounding, the observed electromagnetic field is often distorted because of static shift, increasing the difficulty of data interpretation. In this paper, Daubechies wavelet decomposition method is proposed to recognize measuring point with static shift based on the theory of wavelet analysis. Horst model with inhomogeneous bodies is established and static shift is removed using median filtering method, phase method and wavelet analysis method respectively. The results show that the phase correction result is not stable, relative error has great fluctuation with the frequency; relative error is larger in high frequency than low one for median filtering method, multi scale wavelet analysis correction method is stable, and relative error is not more than 5%, which can effectively suppress the static shift. Finally, static shift is recognized and corrected using the wavelet analysis method for magnetotelluric (MT) data in an area and better results are achieved.
  • Cited by

    Periodical cited type(23)

    1. 徐东晶,张瑞庆,高卫富,姜浩楠,朱海锋,李业,夏志村. 华北型煤田不同覆岩类型下导水裂隙带高度分区预测研究. 煤田地质与勘探. 2025(03): 177-189 . 本站查看
    2. 张玉军,李友伟,肖杰,张志巍,李嘉伟. 坚硬覆岩预裂弱化改性效应及导水裂缝带控制机理. 煤炭科学技术. 2024(04): 105-118 .
    3. 闫和平,李文平,段中会,杨玉贵. 黄陇煤田典型特厚煤层综放开采涌水机理与导水裂隙带发育规律. 煤田地质与勘探. 2024(05): 129-138 . 本站查看
    4. 张勃阳,张宇科,黄虎威,林志斌,李亚超. 基于相似模拟试验的顶板导水裂隙带高度及发育形态研究. 河南理工大学学报(自然科学版). 2024(04): 29-38 .
    5. 李春元. 深部原生煤岩组合体三轴压缩破裂特征与失稳模式. 煤田地质与勘探. 2024(08): 111-123 . 本站查看
    6. 孙谭婷,贾亮亮,王力,潘远飞,晏世荣,余江. 基于多因素的崩塌发育规律与成因分析——以某山区崩塌为例. 价值工程. 2024(33): 103-106 .
    7. 李建彪. 金谷煤矿地表水害防治技术研究. 煤矿现代化. 2023(02): 84-87+91 .
    8. 高正. 曹家滩煤矿导水裂隙带高度确定及水害防治. 陕西煤炭. 2023(04): 196-199 .
    9. 马红卫. 台格庙矿区基岩孔隙裂隙发育规律及富水性分区研究. 煤. 2023(12): 27-31+40 .
    10. 程磊,罗辉,李辉,张玥. 近年来煤矿采动覆岩导水裂隙带的发育高度的研究进展. 科学技术与工程. 2022(01): 28-38 .
    11. 王庆涛,邵红旗. 深部条带开采覆岩和煤柱综合探测及破坏特征. 煤炭技术. 2022(01): 78-82 .
    12. 王泓博,张勇,庞义辉,张春雷. 基于地表点下沉阶段特征的覆岩裂隙带高度演化. 中国矿业大学学报. 2022(01): 24-34 .
    13. 杨深,郭世达,翟俊杰,刘莉. 基于覆岩结构的近距离煤层顶板导高发育规律探究. 内蒙古煤炭经济. 2022(04): 4-6 .
    14. 张玉军,申晨辉,张志巍,李友伟. 我国厚及特厚煤层高强度开采导水裂缝带发育高度区域分布规律. 煤炭科学技术. 2022(05): 38-48 .
    15. 马金飞,范永平,温兆翠. 下组煤层工作面导水裂隙带发育特征研究. 煤炭科技. 2022(04): 152-156 .
    16. 王双明,魏江波,宋世杰,王生全,孙涛. 黄河流域陕北煤炭开采区厚砂岩对覆岩采动裂隙发育的影响及采煤保水建议. 煤田地质与勘探. 2022(12): 1-11 . 本站查看
    17. 王有建,涂敏. 特厚煤层开采顶板突水危险性预测及防治措施. 中国矿业. 2021(04): 109-114 .
    18. 郝钢,王飞,王永文,贺志宏,刘斌,申龙. 裂缝带顺层长钻孔瓦斯抽采技术研究. 中国煤炭. 2021(04): 59-64 .
    19. 陈陆望,王迎新,欧庆华,彭智宏,陈逸飞,李蕊瑞. 考虑覆岩结构影响的近松散层开采导水裂隙带发育高度预测模型研究——以淮北煤田为例. 工程地质学报. 2021(04): 1048-1056 .
    20. 翟景辉,任帅,王方田,毕寸光. 高瓦斯综放开采覆岩导气裂隙带高度演化规律研究. 矿业研究与开发. 2021(09): 92-97 .
    21. 井庆贺,张洪清,郝嘉伟,闫寿庆. 软岩矿井采空区下综采工作面参数优化设计研究. 中国矿业. 2021(12): 121-127 .
    22. 曹健,高斌,黄庆享. 长壁工作面开采上行裂隙混合型裂纹扩展机理. 煤矿安全. 2021(12): 188-193 .
    23. 高振宇,闫江平,庞长庆. 多煤层重复采动覆岩“两带”高度探测技术研究. 能源科技. 2020(07): 33-38 .

    Other cited types(22)

Catalog

    Article Metrics

    Article views (72) PDF downloads (12) Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return