WU Cancan, LI Zhuangfu. Logging facies analysis and sedimentary facies identification based on BP neural network[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(1): 68-71. DOI: 10.3969/j.issn.1001-1986.2012.01.016
Citation: WU Cancan, LI Zhuangfu. Logging facies analysis and sedimentary facies identification based on BP neural network[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(1): 68-71. DOI: 10.3969/j.issn.1001-1986.2012.01.016

Logging facies analysis and sedimentary facies identification based on BP neural network

More Information
  • Received Date: March 15, 2011
  • Available Online: October 26, 2021
  • Logging facies analysis is a method to study sedimentary facies on the basis of BP neural network. First, we have to divide the known areas of stratigraphic column into limited logging facies. Then we sould determine the transformational relation from electrofacies to sedimentary facies on the basis of mathematical methods and knowledge through research on cores and corresponding sedimentary facies. Taking advantage of such relationship establishes the sedimentary facies library. using MATLAB toolbox to establish the BP neural network model to study the characteristics of the logging curve of known sedimentary facies as training samples, classify the extraction of logging characteristics, so that it can make sure the formation of sedimentary facies. Application shows that BP neural network can quickly identify sedimentary facies with high reliability, which can be used for logging facies analysis and sedimentary facies.
  • Related Articles

    [1]LI Hongwei, BAI Xuelian, CUI Jingbin, WAN Zhonghong, YUAN Shihong, CHU Wanchang. Fault identification technology of ant attribute optimization[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(6): 174-179. DOI: 10.3969/j.issn.1001-1986.2019.06.026
    [2]CHEN Gang, WANG Kaibin, JIANG Bici, WANG Xiaolong. Comparison and application of LWD lithology identification method[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 165-169. DOI: 10.3969/j.issn.1001-1986.2018.01.028
    [3]HU Yufeng, CHEN Jun, ZHAO Guoxuan. Research on identification indexes of potential dumping collapse in Guizhou[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(3): 81-85. DOI: 10.3969/j.issn.1001-1986.2015.03.016
    [4]LIU Mingjun, LI Hengtang, JIANG Zaibing. Application of genetic-BP neural network model in lithology identification by logging data in Binchang mining area[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(4): 8-12. DOI: 10.3969/j.issn.1001-1986.2011.04.003
    [5]WANG Xiao-ming, WANG Xiu-hui, ZHENG Zhong. Decomposing method of groundwater flow model identification[J]. COAL GEOLOGY & EXPLORATION, 2008, 38(5): 45-47.
    [6]NING Jian-hong, ZHANG Guang-zhong. Seismic identification technique and its application of collapse column[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(3): 64-67.
    [7]SU Xian-bo, XIE Hong-bo, HUA Si-liang. The microscopic identification of coal brittle-ductile deformation[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(6): 18-21.
    [8]LI Jing-sheng, YAO Lei-hua. Decimal strings genetic algorithm for Theis model hydrogeological parameters identification[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(6): 33-35.
    [9]Fang Zhijiang, Qu Zheng. APPLICATION OF BP NEURAL NETWORK IN ENVIRONMENTAL RECOGNITION MODEL[J]. COAL GEOLOGY & EXPLORATION, 2000, 28(2): 13-15.
    [10]XI Dao-ying, ZHANG Tao. THE APPLICATION OF ARTIFICIAL NEURAL NETWORK IN LITHOLOGY AUTO- IDENTIFICATION FROM COAL WELL LOGS[J]. COAL GEOLOGY & EXPLORATION, 1994, 22(6): 56-61.
  • Cited by

    Periodical cited type(22)

    1. 郭洋洋. 论一种实现煤矿地质测量信息透明化的方法. 内蒙古煤炭经济. 2025(03): 47-49 .
    2. 何文斌. 煤矿巷道三维激光扫描测量精度研究. 内蒙古煤炭经济. 2025(04): 25-27 .
    3. 陈晓伟,陈雷,李猛,胡成军,宋磊,袁鹏喆. 一种长巷道形变监测中轴线提取及断面构建方法. 工矿自动化. 2024(02): 35-41 .
    4. 鞠哲. 综采工作面三维防爆巡检机器人设计及试验. 煤矿机械. 2024(04): 8-10 .
    5. 王嘉伟,王海军,吴汉宁,吴艳,韩珂,程鑫,董敏涛. 基于三维地质建模技术的煤矿隐蔽致灾因素透明化研究. 工矿自动化. 2024(03): 71-81+121 .
    6. 汪卫兵,侯学谦,赵栓峰,贺海涛,邢志中,路正雄. 基于残差优化的综采工作面煤壁点云补全方法. 工矿自动化. 2024(06): 120-128 .
    7. 贾建龙,王志鹏,赵耀斌,刘飞,贾明超,高子龙,呼雨,陈利剑. 智能化矿用喷浆机器人研究及应用. 中国煤炭. 2024(07): 91-96 .
    8. 薛旭升,杨星云,岳佳宁,王川伟,毛清华,马宏伟,王荣泉. 煤矿巷道空间毫米波雷达测量特性与重建方法. 煤田地质与勘探. 2024(10): 186-194 . 本站查看
    9. 林舒萍,宋晓,张铃. 基于三维激光扫描技术的智能制造生产线目标检测研究. 激光杂志. 2024(10): 227-231 .
    10. 徐鑫乾,李海涛,吴雪,李成,王红星,王海楠. 基于云模型的激光点云数据快速计算算法. 自动化技术与应用. 2024(11): 107-110 .
    11. 刘敬东,李旭,郑志强,苟丙荣,韩维新,巩泽文. 激光SALM技术在煤矿巷道形变监测与支护中的应用. 矿山机械. 2024(12): 52-57 .
    12. 袁林山,崔周烽,许长辉,薛松超. 典型地下空间穿戴式三维激光扫描精度分析. 导航定位学报. 2024(06): 76-83 .
    13. 贾建称,贾茜,桑向阳,吴艳. 我国煤矿地质保障系统建设30年:回顾与展望. 煤田地质与勘探. 2023(01): 86-106 . 本站查看
    14. 景宁波,马宪民,郭卫,秦学斌. 改进动态半径的矿井激光雷达点云滤波算法. 西安科技大学学报. 2023(02): 406-413 .
    15. 常巧梅,杨静,阎跃观. 基于三维激光扫描技术的巷道变形测量方法. 煤炭技术. 2023(06): 30-32 .
    16. 顾海荣,罗佳,高子渝,杨文娟,韩帅. 基于深度相机的大直径救援井三维模型重建研究. 煤田地质与勘探. 2023(05): 188-197 . 本站查看
    17. 戴文祥,陈雷,闫鹏飞,王利欣,李波,袁鹏喆. 基于三维激光扫描的煤矿巷道形变监测方法. 工矿自动化. 2023(10): 61-67+95 .
    18. 董兴旺. 从智能化共性问题看柳林煤矿智能化未来发展方向. 山西煤炭. 2022(02): 95-99 .
    19. 杨洪涛,于印,许吉禅,沈梅,陆广慧. 基于线扫描原理的煤矿巷道变形测量系统. 工矿自动化. 2022(07): 113-117+148 .
    20. 李梅,康济童,刘晖,李兆阳,刘曦,朱青,肖彬虎. 基于BIM与GIS的矿山巷道参数化三维建模技术研究. 煤炭科学技术. 2022(07): 25-35 .
    21. 亓玉浩,关士远. 基于激光SLAM的综采工作面实时三维建图方法. 工矿自动化. 2022(11): 139-144 .
    22. 俞艳波,李小松,苏海华,李琦,卢进宏. 便携式三维激光扫描技术在矿山地下巷道可视化建模中的应用. 北京测绘. 2022(12): 1702-1707 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (50) PDF downloads (11) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return