Citation: | WEI Hengfei,FANG Jie,SHI Junjie,et al. Theories, technologies, and prospects for the utilization of deep underground storage space[J]. Coal Geology & Exploration,2025,53(2):67−83. DOI: 10.12363/issn.1001-1986.24.11.0705 |
The world's energy utilization has shifted from high-carbon, high-polluting, non-renewable energy to low-carbon, clean, renewable energy. In this process, the utilization of low-carbon, clean energy typified by natural gas, wind power, solar energy, and hydrogen energy needs to be coupled with deep underground storage space (DUSS) to offset their regional constraints and instability. Additionally, low- and zero-carbon technologies like carbon dioxide (CO2) geological storage also rely on DUSS. Therefore, investigating the theories, technologies, and prospects of DUSS utilization under the low-carbon background will provide significant guidance for efficient DUSS utilization in China.
Based on the investigation into the types and utilization history of global DUSS, as well as the current status of DUSS utilization in China, this study determined the historical stages of global DUSS utilization and provided a summary of the orientations and current status of diversified DUSS utilization, as well as the theoretical and technical status of the construction of underground storage facilities based on DUSS. Furthermore, this study analyzed China's theoretical and technical contributions to the construction of underground storage facilities, along with China's challenges and countermeasures in DUSS utilization.
Generally, the DUSS utilization has been conducted for about 110 years, including three major stages: the initial development stage (1915‒1945), the rapid development stage (1946‒1998), and China's catch and synchronous development stage (1999‒the present). Despite a short history of large-scale DUSS utilization, China holds the originality and leadership of the theories and technologies for the construction of layered salt rock reservoirs and underground water reservoirs in coal mines. Moreover, China has developed the theories and technologies for constructing underground gas storage (UGS) facilities under complex geologic conditions. At present, China holds only limited completed underground storage facilities with single types and application scenarios, lacking completed UGS facilities in aquifers. It is necessary to put more effort into achieving theoretical and technical breakthroughs in hydrogen, helium, and oil storage in salt caverns, as well as CO2 geological storage in saline aquifers. Besides, the resource allocation for DUSS requires enhanced top-level design by the Chinese government and the coordination of various departments. To reach the goals of carbon neutrality and peak carbon dioxide emissions, the DUSS utilization in China holds promising prospects. Underground storage facilities will provide significant support for the large-scale development of industries including natural gas, wind and solar power, green hydrogen, and carbon sequestration in China. The construction of underground storage facilities will reach a 100-billion industrial scale, holding the potential for fostering new technologies and industries and representing significant industrial innovation points for the development of new quality productive forces.
[1] |
TARKOWSKI R,ULIASZ–MISIAK B. Towards underground hydrogen storage:A review of barriers[J]. Renewable and Sustainable Energy Reviews,2022,162:112451. DOI: 10.1016/j.rser.2022.112451
|
[2] |
习近平. 在第七十五届联合国大会一般性辩论上的讲话[R]. 北京:中华人民共和国国务院,2020.
|
[3] |
国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报[EB/OL]. (2024-02-29) [2025-02-14]. https://www.stats.gov.cn/sj/zxfb/202402/t20240228_1947915.html.
|
[4] |
杨春和,王同涛. 深地储能研究进展[J]. 岩石力学与工程学报,2022,41(9):1729−1759.
YANG Chunhe,WANG Tongtao. Advance in deep underground energy storage[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(9):1729−1759.
|
[5] |
曾大乾,张广权,张俊法,等. 中石化地下储气库建设成就与发展展望[J]. 天然气工业,2021,41(9):125−134.
ZENG Daqian,ZHANG Guangquan,ZHANG Junfa,et al. Sinopec’s UGS construction achievement and development prospect[J]. Natural Gas Industry,2021,41(9):125−134.
|
[6] |
陈海生,李泓,徐玉杰,等. 2023年中国储能技术研究进展[J]. 储能科学与技术,2024,13(5):1359−1397.
CHEN Haisheng,LI Hong,XU Yujie,et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology,2024,13(5):1359−1397.
|
[7] |
VISHAL V,SINGH T N. Geologic carbon sequestration understanding reservoir behavior[M]. Berlin:Springer Cham,2016.
|
[8] |
李娜娜,赵晏强,王同涛,等. 国际盐穴储能战略与科技发展态势分析[J]. 中国科学院院刊,2021,36(10):1248−1252.
LI Nana,ZHAO Yanqiang,WANG Tongtao,et al. Analysis of international salt cave energy storage strategy and scientific and technological development trend[J]. Bulletin of Chinese Academy of Sciences,2021,36(10):1248−1252.
|
[9] |
SOFREGAZ. Commercial potential of natural gas storage in lined rock caverns (LRC)[M]. Houston:Department of Energy Federal Energy Technology Center,1999.
|
[10] |
SNIDER L A. Overview of geologic storage of natural gas with an emphasis on assessing the feasibility of storing hydrogen[M]. Albuquerque:Sandia National Laboratories,2009.
|
[11] |
BECKMAN K L,DETERMEYER P L,MOWREY E H. Natural gas storage:Historical development and expected evolution[M]. Houston:International Gas Consulting,1995.
|
[12] |
闫伟,冷光耀,李中,等. 氢能地下储存技术进展和挑战[J]. 石油学报,2023,44(3):556−568.
YAN Wei,LENG Guangyao,LI Zhong,et al. Progress and challenges of underground hydrogen storage technology[J]. Acta Petrolei Sinica,2023,44(3):556−568.
|
[13] |
BROWN L W. Abandoned coal mine stores gas for Colorado peak–day demands[J]. Pipe Line Industry,1978,49(3):55−58.
|
[14] |
赵同彬,刘淑敏,马洪岭,等. 废弃煤矿压缩空气储能研究现状与发展趋势[J]. 煤炭科学技术,2023,51(10):163−176.
ZHAO Tongbin,LIU Shumin,MA Hongling,et al. Research status and development trend of compressed air energy storage in abandoned coal mines[J]. Coal Science and Technology,2023,51(10):163−176.
|
[15] |
文志杰,姜鹏飞,宋振骐,等. 关闭/废弃矿井抽水蓄能开发利用现状与进展[J]. 煤炭学报,2024,49(3):1358−1374.
WEN Zhijie,JIANG Pengfei,SONG Zhenqi,et al. Development status and progress of pumped storage in underground space of closed/abandoned mines[J]. Journal of China Coal Society,2024,49(3):1358−1374.
|
[16] |
何涛,王传礼,高博,等. 废弃矿井抽水蓄能电站基础建设装备关键问题及对策[J]. 科技导报,2021,39(13):59−65.
HE Tao,WANG Chuanli,GAO Bo,et al. Key problems and countermeasures for infrastructure equipment of abandoned mine pumped storage power station[J]. Science & Technology Review,2021,39(13):59−65.
|
[17] |
谢和平,高明忠,高峰,等. 关停矿井转型升级战略构想与关键技术[J]. 煤炭学报,2017,42(6):1355−1365.
XIE Heping,GAO Mingzhong,GAO Feng,et al. Strategic conceptualization and key technology for the transformation and upgrading of shut–down coal mines[J]. Journal of China Coal Society,2017,42(6):1355−1365.
|
[18] |
武志德,郑得文,李东旭,等. 我国利用废弃矿井建设地下储气库可行性研究及建议[J]. 煤炭经济研究,2019,39(5):15−19.
WU Zhide,ZHENG Dewen,LI Dongxu,et al. Feasibility study and suggestions on constructing underground gas storage in abandoned mines in China[J]. Coal Economic Research,2019,39(5):15−19.
|
[19] |
谢和平,侯正猛,高峰,等. 煤矿井下抽水蓄能发电新技术:原理、现状及展望[J]. 煤炭学报,2015,40(5):965−972.
XIE Heping,HOU Zhengmeng,GAO Feng,et al. A new technology of pumped–storage power in underground coal mine:Principles,present situation and future[J]. Journal of China Coal Society,2015,40(5):965−972.
|
[20] |
SOLOMON S. Carbon dioxide storage:Geological security and environmental issues:Case study on the Sleipner gas field in Norway[R]. Bellona Report,2007.
|
[21] |
窦立荣,孙龙德,吕伟峰,等. 全球二氧化碳捕集、利用与封存产业发展趋势及中国面临的挑战与对策[J]. 石油勘探与开发,2023,50(5):1083−1096.
DOU Lirong,SUN Longde,LYU Weifeng,et al. Trend of global carbon dioxide capture,utilization and storage industry and challenges and countermeasures in China[J]. Petroleum Exploration and Development,2023,50(5):1083−1096.
|
[22] |
魏国齐,郑雅丽,邱小松,等. 中国地下储气库地质理论与应用[J]. 石油学报,2019,40(12):1519−1530.
WEI Guoqi,ZHENG Yali,QIU Xiaosong,et al. Geological theory and application of underground gas storage in China[J]. Acta Petrolei Sinica,2019,40(12):1519−1530.
|
[23] |
杨春和,李银平,屈丹安,等. 层状盐岩力学特性研究进展[J]. 力学进展,2008,38(4):484−494.
YANG Chunhe,LI Yinping,QU Dan’an,et al. Advances in researches of the mechanical behaviors of bedded salt rocks[J]. Advances in Mechanics,2008,38(4):484−494.
|
[24] |
王永胜. CO2咸水层封存砂岩储层孔隙尺度变化规律及可注性研究:基于神华CCS示范工程[D]. 武汉:中国地质大学,2021.
WANG Yongsheng. Study on the variation of pore scale and injectability of CO2 saltwater sequestered sandstone reservoir:Based on Shenhua CCS demonstration project[D]. Wuhan:China University of Geosciences,2021.
|
[25] |
顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报,2015,40(2):239−246.
GU Dazhao. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society,2015,40(2):239−246.
|
[26] |
潘楠. 美欧俄乌地下储气库现状及前景[J]. 国际石油经济,2016,24(7):80−92.
PAN Nan. The status quo and outlook for US,EU,Russia and Ukraine UGS[J]. International Petroleum Economics,2016,24(7):80−92.
|
[27] |
马新华,郑得文,魏国齐,等. 中国天然气地下储气库重大科学理论技术发展方向[J]. 天然气工业,2022,42(5):93−99.
MA Xinhua,ZHENG Dewen,WEI Guoqi,et al. Development directions of major scientific theories and technologies for underground gas storage[J]. Natural Gas Industry,2022,42(5):93−99.
|
[28] |
International Gas Union(IGU). Natural gas facts & figures:Part4 underground gas storage[C]//Paris:World gas conference(WGC),2015.
|
[29] |
李国永,徐波,王瑞华,等. 我国天然气地下储气库布局建议[J]. 中国矿业,2021,30(11):7−12.
LI Guoyong,XU Bo,WANG Ruihua,et al. Suggestions on the layout of underground gas storage in China[J]. China Mining Magazine,2021,30(11):7−12.
|
[30] |
杨春和,王同涛. 我国深地储能机遇、挑战与发展建议[J]. 科学通报,2023,68(36):4887−4894. DOI: 10.1360/TB-2023-0841
YANG Chunhe,WANG Tongtao. Opportunities,challenges,and development suggestions for deep underground energy storage in China[J]. Chinese Science Bulletin,2023,68(36):4887−4894. DOI: 10.1360/TB-2023-0841
|
[31] |
周庆凡,张俊法. 地下储氢技术研究综述[J]. 油气与新能源,2022,34(4):1−6.
ZHOU Qingfan,ZHANG Junfa. Review of underground hydrogen storage technology[J]. Petroleum and New Energy,2022,34(4):1−6.
|
[32] |
潘松圻,邹才能,王杭州,等. 地下储氢库发展现状及气藏型储氢库高效建库十大技术挑战[J]. 天然气工业,2023,43(11):164−180. DOI: 10.3787/j.issn.1000-0976.2023.11.016
PAN Songqi,ZOU Caineng,WANG Hangzhou,et al. Development status of underground hydrogen storages and top ten technical challenges to efficient construction of gas reservoir–type underground hydrogen storages[J]. Natural Gas Industry,2023,43(11):164−180. DOI: 10.3787/j.issn.1000-0976.2023.11.016
|
[33] |
刘坚,景春梅,王心楠. 氢储能成全球氢能发展新方向[J]. 中国石化,2022,6:69−71. DOI: 10.3969/j.issn.1005-457X.2022.01.025
LIU Jian,JING Chunmei,WANG Xinnan. Hydrogen energy storage has become a new direction for the development of global hydrogen energy[J]. China Sinopec,2022,6:69−71. DOI: 10.3969/j.issn.1005-457X.2022.01.025
|
[34] |
陆佳敏,徐俊辉,王卫东,等. 大规模地下储氢技术研究展望[J]. 储能科学与技术,2022,11(11):3699−3707.
LU Jiamin,XU Junhui,WANG Weidong,et al. Development of large–scale underground hydrogen storage technology[J]. Energy Storage Science and Technology,2022,11(11):3699−3707.
|
[35] |
孙莹洁,刘延,刁玉杰,等. 山西省煤矿采空地下空间评估与再利用研究[J]. 地质与勘探,2024,60(1):42−51. DOI: 10.12134/j.dzykt.2024.01.005
SUN Yingjie,LIU Ting,DIAO Yujie,et al. Evaluation and reuse of underground space in coal mines of Shanxi Province[J]. Geology and Exploration,2024,60(1):42−51. DOI: 10.12134/j.dzykt.2024.01.005
|
[36] |
薛福,马晓明,游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源,2023,45(9):48−58.
XUE Fu,MA Xiaoming,YOU Yanjun. Energy storage technologies and their applications and development[J]. Integrated Intelligent Energy,2023,45(9):48−58.
|
[37] |
CROTOGINO F,SCHNEIDER G S,EVANS D J. Renewable energy storage in geological formations[J]. Journal of Power and Energy,2018,232(1):100−114 DOI: 10.1177/0957650917731181
|
[38] |
金维平,彭益成. 硬岩地区压缩空气储能工程地下储气洞室选址方法研究[J]. 电力与能源,2017,38(1):63−67.
JIN Weiping,PENG Yicheng. Underground gas storage cavern location method for compressed air energy storage engineering in hard rock area[J]. Power & Energy,2017,38(1):63−67.
|
[39] |
MOULI–CASTILLO J,WILKINSON M,MIGNARD D,et al. Inter–seasonal compressed–air energy storage using saline aquifers[J]. Nature Energy,2019,4:131−139. DOI: 10.1038/s41560-018-0311-0
|
[40] |
黄宽,张万益,王丰翔,等. 地下空间储能国内外发展现状及调查建议[J]. 中国地质,2024,51(1):105−117. DOI: 10.12029/gc20230331001
HUANG Kuan,ZHANG Wanyi,WANG Fengxiang,et al. Development status of underground space energy storage at home and abroad and geological survey suggestions[J]. Geology in China,2024,51(1):105−117. DOI: 10.12029/gc20230331001
|
[41] |
王梦恕,杨会军. 地下水封岩洞油库设计、施工的基本原则[J]. 中国工程科学,2008,10(4):11−16. DOI: 10.3969/j.issn.1009-1742.2008.04.002
WANG Mengshu,YANG Huijun. Basic principles for design and construction of underground water–sealed hydrocarbon–storage rock caverns[J]. Strategic Study of CAE,2008,10(4):11−16. DOI: 10.3969/j.issn.1009-1742.2008.04.002
|
[42] |
中国能源网. 国家石油储备一期工程建成投用[EB/OL]. (2014-11-20) [2025-02-14]. https://www.nea.gov.cn/2014-11/20/c_133799145.htm.
|
[43] |
杨明举,关宝树,钟新樵. 水封式地下储气洞库的应用及研究[J]. 地下空间,2000,20(3):171−175.
YANG Mingju,GUAN Baoshu,ZHONG Xinqiao. Application and research on underground water sealed gas storage tunnel[J]. Underground Space,2000,20(3):171−175.
|
[44] |
孙润林,龙海洋,谭建华,等. 氦储运技术研究进展[J]. 天然气与石油,2024,42(3):25−30. DOI: 10.3969/j.issn.1006-5539.2024.03.005
SUN Runlin,LONG Haiyang,TAN Jianhua,et al. Advances in helium storage and transportation technology:A review[J]. Natural Gas and Oil,2024,42(3):25−30. DOI: 10.3969/j.issn.1006-5539.2024.03.005
|
[45] |
唐金荣,张宇轩,周俊林,等. 全球氦气产业链分析与中国应对策略[J]. 地质通报,2023,42(1):1−13. DOI: 10.12097/j.issn.1671-2552.2023.01.001
TANG Jinrong,ZHANG Yuxuan,ZHOU Junlin,et al. Analysis of global helium industry chain and China’s strategy[J]. Geological Bulletin of China,2023,42(1):1−13. DOI: 10.12097/j.issn.1671-2552.2023.01.001
|
[46] |
贾凌霄,马冰,王欢,等. 全球氦气勘探开发进展与利用现状[J]. 中国地质,2022,49(5):1427−1437. DOI: 10.12029/gc20220505
JIA Lingxiao,MA Bing,WANG Huan,et al. Progress and utilization status of global helium exploration and development[J]. Geology in China,2022,49(5):1427−1437. DOI: 10.12029/gc20220505
|
[47] |
瞭望. 氦气对外依存度超过95%,国产化核心技术突破进展如何:专访中国科学院院士张锁江[EB/OL]. (2023-04-03) [2025-02-14]. http://lw. news. cn/2023-04/03/c_1310707698. htm.
|
[48] |
丁国生,谢萍. 地下盐穴处理核废料的方法[J]. 地下空间与工程学报,2006,2(6):1068−1071. DOI: 10.3969/j.issn.1673-0836.2006.06.040
DING Guosheng,XIE Ping. Using salt cavern storages to dispose nuclear garbage[J]. Chinese Journal of Underground Space and Engineering,2006,2(6):1068−1071. DOI: 10.3969/j.issn.1673-0836.2006.06.040
|
[49] |
张贤,杨晓亮,鲁玺,等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 中国21世纪议程管理中心,全球碳捕集与封存研究院,清华大学,2023.
|
[50] |
FRANKLIN M,ORR J R. Onshore geologic storage of CO2[J]. Science,2009,325(5948):1656−1658. DOI: 10.1126/science.1175677
|
[51] |
FAGORITE V I,ONYEKURU S O,OPARA A I,et al. The major techniques,advantages,and pitfalls of various methods used in geological carbon sequestration[J]. International Journal of Environmental Science and Technology,2023,20:4585−4614. DOI: 10.1007/s13762-022-04351-0
|
[52] |
丁国生,唐立根,丁一宸,等. 中国水层CO2地质封存技术攻关方向[J]. 天然气工业,2024,44(4):39−45. DOI: 10.3787/j.issn.1000-0976.2024.04.004
DING Guosheng,TANG Ligen,DING Yichen,et al. Research direction of CO2 geological storage technology in aquifers in China[J]. Natural Gas Industry,2024,44(4):39−45. DOI: 10.3787/j.issn.1000-0976.2024.04.004
|
[53] |
TEK M R. Underground storage of natural gas theory and practice[M]. London:Kluwer Academic Publishers,1989.
|
[54] |
FLANIGAN O. Underground gas storage facilities:Design and implementation[M]. London:Elsevier Science,1995.
|
[55] |
丁国生,丁一宸,李洋,等. 碳中和战略下的中国地下储气库发展前景[J]. 油气储运,2022,41(1):1−9.
DING Guosheng,DING Yichen,LI Yang,et al. Prospects of underground gas storage in China under the strategy of carbon neutrality[J]. Oil & Gas Storage and Transportation,2022,41(1):1−9.
|
[56] |
郑雅丽,邱小松,赖欣,等. 气藏型地下储气库地质体注采运行风险分级与管控[J]. 天然气工业,2022,42(3):114−119. DOI: 10.3787/j.issn.1000-0976.2022.03.013
ZHENG Yali,QIU Xiaosong,LAI Xin,et al. Risk classification and control of gas–storage geological body of gas reservoir type during injection,production and operation[J]. Natural Gas Industry,2022,42(3):114−119. DOI: 10.3787/j.issn.1000-0976.2022.03.013
|
[57] |
高广亮,刘伟,李聪,等. 油藏改建地下储气库库容量计算方法[J]. 天然气工业,2023,43(10):132−140. DOI: 10.3787/j.issn.1000-0976.2023.10.014
GAO Guangliang,LIU Wei,LI Cong,et al. A calculation method for the storage capacity of UGS rebuilt from oil reservoirs[J]. Natural Gas Industry,2023,43(10):132−140. DOI: 10.3787/j.issn.1000-0976.2023.10.014
|
[58] |
马新华,郑得文,丁国生,等. 复杂地质条件储气库“极限动用”理论与实践[J]. 石油勘探与开发,2023,50(2):373−383. DOI: 10.11698/PED.20220829
MA Xinhua,ZHENG Dewen,DING Guosheng,et al. “Extreme utilization” theory and practice in gas storages with complex geological conditions[J]. Petroleum Exploration and Development,2023,50(2):373−383. DOI: 10.11698/PED.20220829
|
[59] |
胡彩云,李聪,杨智斌,等. 气顶砂岩油藏型储气库运行上限压力和库容量定量评价研究[J]. 地质力学学报,2024,30(3):419−426. DOI: 10.12090/j.issn.1006-6616.2023075
HU Caiyun,LI Cong,YANG Zhibin,et al. Quantitative evaluation of maximum operating pressure and storage capacity for gas–top sandstone reservoir–type gas storage[J]. Journal of Geomechanics,2024,30(3):419−426. DOI: 10.12090/j.issn.1006-6616.2023075
|
[60] |
BACHU S,BONIJOLY D,BRADSHAW J,et al. CO2 storage capacity estimation:Methodology and gaps[J]. International Journal of Greenhouse Gas Control,2007,1(4):430−443. DOI: 10.1016/S1750-5836(07)00086-2
|
[61] |
BRADSHAW J,BACHU S,BONIJOLY D,et al. CO2 storage capacity estimation:Issues and development of standards[J]. International Journal of Greenhouse Gas Control,2007,1(1):62−68. DOI: 10.1016/S1750-5836(07)00027-8
|
[62] |
ORLIC B,HEEGE J,WASSING B. Assessing the integrity of fault– and top seals at CO2 storage sites[J]. Energy Procedia,2011,4:4798−4805. DOI: 10.1016/j.egypro.2011.02.445
|
[63] |
BACHU S. Sequestration of CO2 in geological media:Criteria and approach for site selection in response to climate change[J]. Energy Conversion & Management,2000,41(9):953−970.
|
[64] |
SHUKLA R,RANJITH P,HAQUE A,et al. A review of studies on CO2 sequestration and caprock integrity[J]. Fuel,2010,89(10):2651−2664. DOI: 10.1016/j.fuel.2010.05.012
|
[65] |
LEUNG D Y C,CARAMANNA G,MAROTO–VALER M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews,2014,39:426−443. DOI: 10.1016/j.rser.2014.07.093
|
[66] |
魏宁,刘胜男,李小春,等. CO2地质利用与封存的关键技术清单[J]. 洁净煤技术,2022,28(6):14−25.
WEI Ning,LIU Shengnan,LI Xiaochun,et al. Key technologies inventory of CO2 geological utilization and storage[J]. Clean Coal Technology,2022,28(6):14−25.
|
[67] |
祁生文,郑博文,路伟,等. 二氧化碳地质封存选址指标体系及适宜性评价研究[J]. 第四纪研究,2023,43(2):523−550. DOI: 10.11928/j.issn.1001-7410.2023.02.19
QI Shengwen,ZHENG Bowen,LU Wei,et al. Investigation of indexes system and suitability evaluation for carbon dioxide geological storage site[J]. Quaternary Sciences,2023,43(2):523−550. DOI: 10.11928/j.issn.1001-7410.2023.02.19
|
[68] |
祁生文,郑博文,王赞,等. 二氧化碳地质利用与封存场址的地质评价[J]. 中国科学:地球科学,2023,53(9):1937−1957.
QI Shengwen,ZHENG Bowen,WANG Zan,et al. Geological evaluation for the carbon dioxide geological utilization and storage (CGUS) site:A review[J]. Science China Earth Sciences,2023,53(9):1937−1957.
|
[69] |
刁玉杰,刘廷,魏宁,等. 咸水层二氧化碳地质封存潜力分级及评价思路[J]. 中国地质,2023,50(3):943−951. DOI: 10.12029/gc20221030001
DIAO Yujie,LIU Ting,WEI Ning,et al. Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J]. Geology in China,2023,50(3):943−951. DOI: 10.12029/gc20221030001
|
[70] |
李阳,王锐,赵清民,等. 含油气盆地咸水层二氧化碳封存潜力评价方法[J]. 石油勘探与开发,2023,50(2):424−430. DOI: 10.11698/PED.20220851
LI Yang,WANG Rui,ZHAO Qingmin,et al. A CO2 storage potential evaluation method for saline aquifers in a petroliferous basin[J]. Petroleum Exploration and Development,2023,50(2):424−430. DOI: 10.11698/PED.20220851
|
[71] |
桑树勋,刘世奇,朱前林,等. CO2地质封存潜力与能源资源协同的技术基础研究进展[J]. 煤炭学报,2023,48(7):2700−2716.
SANG Shuxun,LIU Shiqi,ZHU Qianlin,et al. Research progress on technical basis of synergy between CO2 geological storage potential and energy resources[J]. Journal of China Coal Society,2023,48(7):2700−2716.
|
[72] |
杨术刚,蔡明玉,张坤峰,等. CO2–水–岩相互作用对CO2地质封存体物性影响研究进展及展望[J]. 油气地质与采收率,2023,30(6):80−91.
YANG Shugang,CAI Mingyu,ZHANG Kunfeng,et al. Research progress and prospect of CO2–water–rock interaction on petrophysical properties of CO2 geological sequestration[J]. Petroleum Geology and Recovery Efficiency,2023,30(6):80−91.
|
[73] |
PETER A,YANG Dongmin,ESHIET K I I I,et al. A review of the studies on CO2–brine–rock interaction in geological storage process[J]. Geosciences,2022,12(4):168. DOI: 10.3390/geosciences12040168
|
[74] |
Intergovernmental Panel on Climate Change. Special report on carbon dioxide capture and storage[M]. New York:Cambridge University Press,2005.
|
[75] |
VILARRASA V,SIMONE S D,CARRERA J,et al. Multiple induced seismicity mechanisms at Castor underground gas storage illustrate the need for thorough monitoring[J]. Nature Communications,2022,13:3447. DOI: 10.1038/s41467-022-30903-6
|
[76] |
陈博文,王锐,李琦,等. CO2地质封存盖层密闭性研究现状与进展[J]. 高校地质学报,2023,29(1):85−99.
CHEN Bowen,WANG Rui,LI Qi,et al. Status and advances of research on caprock sealing properties of CO2 geological storage[J]. Geological Journal of China Universities,2023,29(1):85−99.
|
[77] |
SIBSON R H. Brittle–failure controls on maximum sustainable overpressure in different tectonic regimes[J]. AAPG Bulletin,2003,87(6):901−908. DOI: 10.1306/01290300181
|
[78] |
JIMENEZ J A,CHALATURNYK R J. Integrity of bounding seals for geological storage of greenhouse gases:The SPE/ISRM Rock Mechanics Conference[C]. Irving:Society of Petroleum Engineers,2002.
|
[79] |
完颜祺琪,王云,李东旭,等. 复杂地质条件下储气库建设安全运行技术进展[J]. 油气储运,2023,42(10):1092−1099.
WANYAN Qiqi,WANG Yun,LI Dongxu,et al. Technical progress of construction and safe operation of underground gas storage under complex geological conditions[J]. Oil & Gas Storage and Transportation,2023,42(10):1092−1099.
|
[80] |
杨春和,王贵宾,施锡林,等. 中国大规模盐穴储氢需求与挑战[J]. 岩土力学,2024,45(1):1−19.
YANG Chunhe,WANG Guibin,SHI Xilin,et al. Demands and challenges of large–scale salt cavern hydrogen storage in China[J]. Rock and Soil Mechanics,2024,45(1):1−19.
|
[81] |
顾大钊,曹志国,李井峰,等. 煤矿地下水库技术原创试验平台体系研制及应用[J]. 煤炭学报,2024,49(1):100−113.
GU Dazhao,CAO Zhiguo,LI Jingfeng,et al. Original experimental platform system and application of underground coal mine reservoirs[J]. Journal of China Coal Society,2024,49(1):100−113.
|
[82] |
阳小平. 中国地下储气库建设需求与关键技术发展方向[J]. 油气储运,2023,42(10):1100−1106. DOI: 10.6047/j.issn.1000-8241.2023.10.003
YANG Xiaoping. Construction demand and key technology development direction of underground gas storage in China[J]. Oil & Gas Storage and Transportation,2023,42(10):1100−1106. DOI: 10.6047/j.issn.1000-8241.2023.10.003
|
[83] |
金凤鸣,贾善坡,张辉,等. 京津冀地区断陷盆地含水层储气库评价体系及目标优选[J]. 天然气地球科学,2017,28(9):1433−1445.
JIN Fengming,JIA Shanpo,ZHANG Hui,et al. Evaluation system and optimization of aquifer exploration targets for gas storage in the Beijing,Tianjin and Hebei faulted basins[J]. Natural Gas Geoscience,2017,28(9):1433−1445.
|
[84] |
邱小松,郑雅丽,叶颖,等. 含水层储气库库址筛选及关键指标评价方法:以苏北盆地白驹含水层为例[J]. 中国石油勘探,2021,26(5):140−148. DOI: 10.3969/j.issn.1672-7703.2021.05.013
QIU Xiaosong,ZHENG Yali,YE Ying,et al. Aquifer site selection for natural gas storage and key indices evaluation method:A case study of Baiju aquifer in Subei Basin[J]. China Petroleum Exploration,2021,26(5):140−148. DOI: 10.3969/j.issn.1672-7703.2021.05.013
|
[85] |
巴金红,康延鹏,姜海涛,等. 国内盐穴储气库老腔利用现状及展望[J]. 石油化工应用,2020,39(7):1−5. DOI: 10.3969/j.issn.1673-5285.2020.07.001
BA Jinhong,KANG Yanpeng,JIANG Haitao,et al. Present situation and prospect of the utilization of old cavity in domestic salt cavern gas storage[J]. Petrochemical Industry Application,2020,39(7):1−5. DOI: 10.3969/j.issn.1673-5285.2020.07.001
|
[86] |
HADDAD P G,RANCHOU–PEYRUSE M,GUIGNARD M,et al. Geological storage of hydrogen in deep aquifers:An experimental multidisciplinary study[J]. Energy & Environmental Science,2022,15(8):3400−3415.
|
[87] |
REITENBACH V,GANZER L,ALBRECHT D,et al. Influence of added hydrogen on underground gas storage:A review of key issues[J]. Environmental Earth Sciences,2015,73:6927−6937. DOI: 10.1007/s12665-015-4176-2
|
[88] |
ZIVAR D,KUMAR S,FOROOZESH J. Underground hydrogen storage:A comprehensive review[J]. International Journal of Hydrogen Energy,2021,46(45):23436−23462. DOI: 10.1016/j.ijhydene.2020.08.138
|
[89] |
刘翠伟,洪伟民,王多才,等. 地下储氢技术研究进展[J]. 油气储运,2023,42(8):841−855.
LIU Cuiwei,HONG Weimin,WANG Duocai,et al. Research progress of underground hydrogen storage technology[J]. Oil & Gas Storage and Transportation,2023,42(8):841−855.
|
[90] |
周照恒,周冬林,王建夫,等. 中国盐穴氦气储库建设可行性与关键技术[J]. 油气储运,2024,43(3):272−280.
ZHOU Zhaoheng,ZHOU Donglin,WANG Jianfu,et al. Feasibility and key technologies for the construction of salt cavern helium storage in China[J]. Oil & Gas Storage and Transportation,2024,43(3):272−280.
|
[91] |
中国煤炭网. 废弃矿井资源利用,路在何方?−访中国工程院院士袁亮[EB/OL]. (2017-04-26) [2025-02-14]. http://www.ccoalnews.com/201704/26/c11454.html.
|
[92] |
袁亮,姜耀东,王凯,等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报,2018,43(1):14−20.
YUAN Liang,JIANG Yaodong,WANG Kai,et al. Precision exploitation and utilization of closed/abandoned mine resources in China[J]. Journal of China Coal Society,2018,43(1):14−20.
|
[93] |
贺小龙,吴国强,朱士飞,等. 我国废弃煤矿井地质工作重点方向研究与思考[J]. 中国矿业,2019,28(1):80−84. DOI: 10.12075/j.issn.1004-4051.2019.01.027
HE Xiaolong,WU Guoqiang,ZHU Shifei,et al. The key directions research and consideration of abandoned coal mines geological work in China[J]. China Mining Magazine,2019,28(1):80−84. DOI: 10.12075/j.issn.1004-4051.2019.01.027
|
[94] |
石孝明,武志德,刘旭正,等. 废弃煤矿储气库库址评价方法[J]. 油气储运,2023,42(12):1390−1398.
SHI Xiaoming,WU Zhide,LIU Xuzheng,et al. Evaluation method for abandoned coal mine gas storage reservoir sites[J]. Oil & Gas Storage and Transportation,2023,42(12):1390−1398.
|
[95] |
常春勤,邹友峰. 国内外废弃矿井资源化开发模式述评[J]. 资源开发与市场,2014,30(4):425−429. DOI: 10.3969/j.issn.1005-8141.2014.04.012
CHANG Chunqin,ZOU Youfeng. Review on resource development mode of abandoned underground space of mine[J]. Resource Development & Market,2014,30(4):425−429. DOI: 10.3969/j.issn.1005-8141.2014.04.012
|
[96] |
LIEBSCHER A,MÜNCH U. Geological storage of CO2–long term security aspects[M]. Berlin:Springer Cham,2015.
|
[97] |
央视网. 建设现代化产业体系“氢风”徐来 我国积极打造绿氢全产业链[EB/OL]. (2023-07-03) [2025-02-14]. https://tv.cctv.cn/2023/07/03/VIDEQ8XGQWMgQwGOD5xpKaF4230703.shtml.
|
[98] |
中华人民共和国国务院令. 碳排放权交易管理暂行条例[EB/OL]. (2024-02-04) [2025-02-14]. https://www.gov.cn/zhengce/zhengceku/202402/content_6930138.htm.
|