Citation: | LI Xin,CHEN Zhenlong,GUO Tao,et al. Geological condition assessment and selection of optimal favorable areas for deep underground coal gasification in the Yanchuannan block[J]. Coal Geology & Exploration,2025,53(2):44−54. DOI: 10.12363/issn.1001-1986.24.11.0676 |
Geological condition assessment for underground coal gasification (UCG) allows for considerably reducing the risk of UCG projects, while scientific siting serves as a prerequisite for the success of UCG projects. To achieve the geological condition assessment for deep UCG and the selection of optimal favorable areas in the Yanchuannan block, this study quantified the indices of coal quality, coal seam occurrence, surrounding rocks, hydrogeology, and structures in the No.2 coal seam in the study area. Employing the technique for order preference by similarity to an ideal solution (TOPSIS) method, this study performed mathematical assessments and grading of various exploitation units. Finally, this study obtained comprehensive assessment results of favorable, relatively favorable, and potentially favorable areas for UCG.
The results indicate that the No.2 coal seam in the study area was formed in a sedimentary environment of the delta plain facies. This coal seam consists primarily of medium-rank coals, including coking, lean, and meagre coals, exhibiting low average moisture and low average ash contents and a high yield of volatile constituents. In terms of sulfur content, the No.2 coal seam contains low- to high-sulfur coals. Furthermore, the No.2 coal seam manifests a considerable thickness, high stability, a low average gangue layer number, and low gangue coefficients (i.e., the ratio of the total gangue thickness to the total coal seam thickness), and simple structures, suggesting a stable moderately thick to thick coal seam with a relatively complete coal structure. The roof and floor of the No.2 coal seam are dominated by mudstones, and its surrounding rocks show high values of the comprehensive lithological index and high sealing performance. Faults in the coal seam exhibit moderate fractal dimension values overall, suggesting simple fault development and favorable conditions for exploitation. The study area exhibits surface water locally, with moderate hydrological fractal dimension values and high groundwater sealing coefficients.
Overall, the No.2 coal seam in the study area exhibits resource and geological conditions suitable for the implementation of UCG projects. Based on the distribution characteristics of structures, burial depths, rivers, and mine boundaries, as well as the description of geological exploration data, the No.2 coal seam can be divided into 11 exploitation units, with favorable areas for UCG primarily distributed in the northern part. Specifically, the most favorable areas consist of units Ⅴ and Ⅲ in the north-central part, the relatively favorable areas include units Ⅰ, Ⅱ, Ⅳ, Ⅵ, Ⅶ, Ⅸ, and Ⅹ, and potentially favorable areas comprise units Ⅷ and Ⅺ.
[1] |
NIEC M,SERMET E,CHECKO J,et al. Evaluation of coal resources for underground gasification in Poland:Selection of possible UCG sites[J]. Fuel,2017,208:193−202. DOI: 10.1016/j.fuel.2017.06.087
|
[2] |
秦勇,易同生,周永锋,等. 煤炭地下气化产业政策建设困境与破局对策[J]. 煤炭学报,2023,48(6):2498−2505.
QIN Yong,YI Tongsheng,ZHOU Yongfeng,et al. Dilemma and countermeasure of policy construction of UCG industry[J]. Journal of China Coal Society,2023,48(6):2498−2505.
|
[3] |
CHEN Xinjun,ZHAO Shihu,LIU Zengqin,et al. Research on evaluation technology system of mid–deep underground coal gasification based on researchers from China[J]. Heliyon,2024,10(12):e33248. DOI: 10.1016/j.heliyon.2024.e33248
|
[4] |
滕吉文,王玉辰,司芗,等. 煤炭、煤层气多元转型是中国化石能源勘探开发与供需之本[J]. 科学技术与工程,2021,21(22):9169−9193. DOI: 10.3969/j.issn.1671-1815.2021.22.001
TENG Jiwen,WANG Yuchen,SI Xiang,et al. Diversified transformation of coal and coalbed methane:China’s fossil energy exploration,development,supply and demand[J]. Science Technology and Engineering,2021,21(22):9169−9193. DOI: 10.3969/j.issn.1671-1815.2021.22.001
|
[5] |
秦勇,易同生,杨磊,等. 中国煤炭地下气化现场试验探索历程与前景展望[J]. 煤田地质与勘探,2023,51(7):17−25. DOI: 10.12363/issn.1001-1986.22.12.0985
QIN Yong,YI Tongsheng,YANG Lei,et al. Underground coal gasification field tests in China:History and prospects[J]. Coal Geology & Exploration,2023,51(7):17−25. DOI: 10.12363/issn.1001-1986.22.12.0985
|
[6] |
杨兰和,宋全友,李耀娟. 煤炭地下气化工程[M]. 徐州:中国矿业大学出版社,2001.
|
[7] |
刘淑琴,张尚军,牛茂斐,等. 煤炭地下气化技术及其应用前景[J]. 地学前缘,2016,23(3):97−102.
LIU Shuqin,ZHANG Shangjun,NIU Maofei,et al. Technology process and application prospect of underground coal gasification[J]. Earth Science Frontiers,2016,23(3):97−102.
|
[8] |
秦勇,王作棠,韩磊. 煤炭地下气化中的地质问题[J]. 煤炭学报,2019,44(8):2516−2530.
QIN Yong,WANG Zuotang,HAN Lei. Geological problems in underground coal gasification[J]. Journal of China Coal Society,2019,44(8):2516−2530.
|
[9] |
金黎黎,杨磊,吴亚荣,等. 欧盟国家煤炭地下气化先导试验历程与进展述评[J]. 煤田地质与勘探,2023,51(7):43−51. DOI: 10.12363/issn.1001-1986.22.12.0995
JIN Lili,YANG Lei,WU Yarong,et al. UCG pilot tests in EU countries:A review of history and progress[J]. Coal Geology & Exploration,2023,51(7):43−51. DOI: 10.12363/issn.1001-1986.22.12.0995
|
[10] |
孔维敏,周永峰,易同生,等. 苏联煤炭地下气化产业化历史回顾与评述[J]. 煤田地质与勘探,2023,51(7):26−33. DOI: 10.12363/issn.1001-1986.22.12.0994
KONG Weimin,ZHOU Yongfeng,YI Tongsheng,et al. UCG industrialization in the Soviet Union:History and comments[J]. Coal Geology & Exploration,2023,51(7):26−33. DOI: 10.12363/issn.1001-1986.22.12.0994
|
[11] |
周泽,汪凌霞,秦勇,等. 澳大利亚UCG工程示范历程与启示[J]. 煤田地质与勘探,2023,51(7):52−60. DOI: 10.12363/issn.1001-1986.22.12.0971
ZHOU Ze,WANG Lingxia,QIN Yong,et al. UCG engineering demonstrations in Australia:History and its implications[J]. Coal Geology & Exploration,2023,51(7):52−60. DOI: 10.12363/issn.1001-1986.22.12.0971
|
[12] |
PEI Peng,NASAH J,SOLC J,et al. Investigation of the feasibility of underground coal gasification in North Dakota,United States[J]. Energy Conversion and Management,2016,113:95−103. DOI: 10.1016/j.enconman.2016.01.053
|
[13] |
周贺,吴财芳,蒋秀明,等. 煤炭地下气化地质选区指标体系构建及有利区评价技术[J]. 地球科学,2022,47(5):1777−1790. DOI: 10.3321/j.issn.1000-2383.2022.5.dqkx202205017
ZHOU He,WU Caifang,JIANG Xiuming,et al. Construction of geological selection index system and evaluation technology of favorable area for underground coal gasification[J]. Earth Science,2022,47(5):1777−1790. DOI: 10.3321/j.issn.1000-2383.2022.5.dqkx202205017
|
[14] |
DRZEWIECKI J. The basic technological conditions of underground coal gasification (UCG)[J]. AGH Journal of Mining and Geoengineering,2012,36(1):117−124.
|
[15] |
VYAS D U,SINGH R P. Worldwide developments in UCG and Indian initiative[J]. Procedia Earth and Planetary Science,2015,11:29−37. DOI: 10.1016/j.proeps.2015.06.005
|
[16] |
YANG Dongmin,KOUKOUZAS N,GREEN M,et al. Recent development on underground coal gasification and subsequent CO2 storage[J]. Journal of the Energy Institute,2016,89(4):469−484. DOI: 10.1016/j.joei.2015.05.004
|
[17] |
BHASKARAN S,GANESH A,MAHAJANI S,et al. Comparison between two types of Indian coals for the feasibility of underground coal gasification through laboratory scale experiments[J]. Fuel,2013,113:837−843. DOI: 10.1016/j.fuel.2013.05.080
|
[18] |
HUANG Wengang,WANG Zuotang,XIN Lin,et al. Feasibility study on underground coal gasification of No.15 seam in Fenghuangshan Mine[J]. Journal of the Southern African Institute of Mining & Metallurgy,2012,112(10):897−903.
|
[19] |
黄温钢,王作棠. 煤炭地下气化变权–模糊层次综合评价模型[J]. 西安科技大学学报,2017,37(4):500−507.
HUANG Wengang,WANG Zuotang. Comprehensive evaluation model of fuzzy analytic hierarchy process with variable weight for underground coal gasification[J]. Journal of Xi’an University of Science and Technology,2017,37(4):500−507.
|
[20] |
赵岳,黄温钢,徐强,等. 煤炭地下气化地质条件评价研究:以江苏省朱寨井田为例[J]. 河南理工大学学报(自然科学版),2018,37(3):1−11.
ZHAO Yue,HUANG Wengang,XU Qiang,et al. Study on evaluation of geological conditions for underground coal gasification:Taking Zhuzhai Minefield of Jiangsu Province as an example[J]. Journal of Henan Polytechnic University (Natural Science),2018,37(3):1−11.
|
[21] |
周泽,易同生,秦勇,等. 煤炭地下气化的敏感性地质因素探讨[J]. 煤田地质与勘探,2024,52(3):24−36. DOI: 10.12363/issn.1001-1986.23.08.0473
ZHOU Ze,YI Tongsheng,QIN Yong,et al. Exploring geological parameters sensitive to underground coal gasification[J]. Coal Geology & Exploration,2024,52(3):24−36. DOI: 10.12363/issn.1001-1986.23.08.0473
|
[22] |
陈贞龙. 延川南深部煤层气田地质单元划分及开发对策[J]. 煤田地质与勘探,2021,49(2):13−20. DOI: 10.3969/j.issn.1001-1986.2021.02.002
CHEN Zhenlong. Geological unit division and development countermeasures of deep coalbed methane in southern Yanchuan Block[J]. Coal Geology & Exploration,2021,49(2):13−20. DOI: 10.3969/j.issn.1001-1986.2021.02.002
|
[23] |
付玉通,原俊红,崔彬,等. 延川南区块深部煤层气与致密砂岩气合采关键技术[J]. 煤炭学报,2018,43(6):1747−1753.
FU Yutong,YUAN Junhong,CUI Bin,et al. Key technology on co–exploitation of coalbed methane and tight sandstone in south area of Yanchuan[J]. Journal of China Coal Society,2018,43(6):1747−1753.
|
[24] |
杨兰和. 煤炭地下气化“三带”特征及影响变量的研究[J]. 南京理工大学学报,2001,25(5):533−537.
YANG Lanhe. Characteristics of “three zones” in underground coal gasification and its study of influence variables[J]. Journal of Nanjing University of Science and Technology,2001,25(5):533−537.
|
[25] |
葛世荣. 深部煤炭化学开采技术[J]. 中国矿业大学学报,2017,46(4):679−691.
GE Shirong. Chemical mining technology for deep coal resources[J]. Journal of China University of Mining & Technology,2017,46(4):679−691.
|
[26] |
XIN Lin,WANG Zuotang,WANG Gang,et al. Technological aspects for underground coal gasification in steeply inclined thin coal seams at Zhongliangshan Coal Mine in China[J]. Fuel,2017,191:486−494. DOI: 10.1016/j.fuel.2016.11.102
|
[27] |
张琦. 煤对二氧化碳化学反应性的测定影响因素分析[J]. 煤质技术,2017(4):38−40. DOI: 10.3969/j.issn.1007-7677.2017.04.010
ZHANG Qi. Analysis of influencing factors of determination of coal chemical reactivity for carbon dioxide[J]. Coal Quality Technology,2017(4):38−40. DOI: 10.3969/j.issn.1007-7677.2017.04.010
|
[28] |
刘淑琴,师素珍,冯国旭,等. 煤炭地下气化地质选址原则与案例评价[J]. 煤炭学报,2019,44(8):2531−2538.
LIU Shuqin,SHI Suzhen,FENG Guoxu,et al. Geological site selection and evaluation for underground coal gasification[J]. Journal of China Coal Society,2019,44(8):2531−2538.
|
[29] |
刘淑琴,梁杰,余学东,等. 不同煤种地下气化特性研究[J]. 中国矿业大学学报,2003,32(6):624−628. DOI: 10.3321/j.issn:1000-1964.2003.06.006
LIU Shuqin,LIANG Jie,YU Xuedong,et al. Characteristics of underground gasification of different kinds of coal[J]. Journal of China University of Mining & Technology,2003,32(6):624−628. DOI: 10.3321/j.issn:1000-1964.2003.06.006
|
[30] |
王张卿. 基于三区分布的煤炭地下气化物料与能量平衡模型的构建[D]. 北京:中国矿业大学(北京),2016.
WANG Zhangqing. Establishment of mass and energy balance model in UCG process based on three zones distribution[D]. Beijing:China University of Mining and Technology-Beijing,2016.
|
[31] |
KAPUSTA K. Effect of lignite properties on its suitability for the implementation of underground coal gasification (UCG) in selected deposits[J]. Energies,2021,14(18):5816. DOI: 10.3390/en14185816
|
[32] |
BIELOWICZ B,KASINSKI J R. The possibility of underground gasification of lignite from Polish deposits[J]. International Journal of Coal Geology,2014,131:304−318. DOI: 10.1016/j.coal.2014.06.025
|
[33] |
SHAFIROVICH E,VARMA A. Underground coal gasification:A brief review of current status[J]. Industrial & Engineering Chemistry Research,2009,48(17):7865−7875.
|
[34] |
谢明忠. 冀北榆树沟煤矿区褐煤地下气化地质条件分析[J]. 中国煤炭地质,2008,20(2):9−11. DOI: 10.3969/j.issn.1674-1803.2008.02.003
XIE Mingzhong. Analysis of underground gasification geological condition in Yushugou Coalmine Area,northern Hebei Province[J]. Coal Geology of China,2008,20(2):9−11. DOI: 10.3969/j.issn.1674-1803.2008.02.003
|
[35] |
郭晨,秦勇,韩冬. 黔西比德–三塘盆地煤层气井产出水离子动态及其对产能的指示[J]. 煤炭学报,2017,42(3):680−686.
GUO Chen,QIN Yong,HAN Dong. Ions dynamics of produced water and indication for CBM production from wells in Bide–Santang Basin,western Guizhou[J]. Journal of China Coal Society,2017,42(3):680−686.
|
[36] |
王建涛. 阜康矿区煤层气开发区块划分与潜力评价[D]. 焦作:河南理工大学,2016.
WANG Jiantao. Block division and potential evaluation of coal–bed methane development in Fukang mining area[D]. Jiaozuo:Henan Polytechnic University,2016.
|
[37] |
李嘉敏,王猛,贾腾飞,等. 准南煤田煤地下气化地质条件评价及有利区模糊优选[J]. 煤炭技术,2022,41(8):67−71.
LI Jiamin,WANG Meng,JIA Tengfei,et al. Evaluation of geological conditions and fuzzy optimization of favorable area for coal gasification in southern Junggar Coalfield[J]. Coal Technology,2022,41(8):67−71.
|
[38] |
HE Jimin,YUAN Mei,LI Bobo,et al. Correction to “research on the optimization for acidification modification scheme considering coal’s wettability based on the AHP–TOPSIS method”[J]. ACS Omega,2024,9(13):15725. DOI: 10.1021/acsomega.4c01470
|