WANG Zhenzhi,FU Xuehai,PAN Jienan,et al. Factors influencing the production of coalbed methane from deep reservoirs[J]. Coal Geology & Exploration,2025,53(2):84−98. DOI: 10.12363/issn.1001-1986.24.10.0618
Citation: WANG Zhenzhi,FU Xuehai,PAN Jienan,et al. Factors influencing the production of coalbed methane from deep reservoirs[J]. Coal Geology & Exploration,2025,53(2):84−98. DOI: 10.12363/issn.1001-1986.24.10.0618

Factors influencing the production of coalbed methane from deep reservoirs

More Information
  • Received Date: October 08, 2024
  • Revised Date: January 15, 2025
  • Accepted Date: February 24, 2025
  • Objective 

    The production characteristics of coalbed methane (CBM) from deep reservoirs differ significantly from those of CBM from shallow reservoirs. Key challenges in deep CBM production include maintaining reservoir permeability or minimizing permeability loss, enhancing CBM (CH4) desorption efficiency, and accurately predicting the laws of CH4 diffusion. There is an urgent need to overcome these challenges through technological innovation and theoretical research.

    Methods 

    This study systematically analyzed the advances in domestic and international research on coal reservoir permeability, CBM desorption, and CBM diffusion. By integrating the classification of production stages of deep coal reservoirs with the dominant CBM migration mechanisms of varying stages, this study summarized the mechanisms and influential factors of deep CBM production.

    Results and Conclusions 

    The results indicate that deep CBM production can be divided into four stages: rapid production increase, relatively stable production, gradual production decrease, and low production. During the former two stages, reservoir pressure remains high, free gas serves as a primary gas source, and methane migration is dominated by seepage flow. Key influential factors of both stages include coal structure, developmental degrees of pores and fractures, reservoir temperature, in situ stress, and effective stress. At these stages, minimizing permeability loss is crucial, and direct fracturing should be avoided in reservoirs with a high proportion of granulated and mylonite coals. After the relatively stable production phase, an increase in the reservoir permeability caused by reservoir temperature will gradually increase with an enhancement in the slip effect. Controlling pressure drop and slow production can help to slow down the decline of reservoir permeability. In the low-production stage, the permeability loss rate caused by both primary and artificially induced fractures approaches 100%. However, the irreversible permeability loss rate remains significantly lower than that of shallow coal reservoirs, suggesting the feasibility of secondary reservoir stimulation for increased production. From the rapid production increase stage to the relatively stable production stage, the adsorbed gas begins to undergo gradual desorption. In this case, the primary objectives are to expand the desorption range, ensure the opening of seepage channels, and enhance the productivity of CBM wells. Compared to shallow reservoirs, the desorption of adsorbed gas in deep coal reservoirs occurs over a prolonged period, with the critical desorption pressure being challenging to determine accurately. Furthermore, the pathways for gas migration are prone to be compressed and close, leading to a limited desorption range. To achieve precise estimations of CBM recovery rates, it is necessary to adopt a stepwise depressurization desorption method in experimental research. Specifically, achieving a gradual decrease in the reservoir pressure using control measures during CBM production can effectively enhance the desorption rate of adsorbed gas in micropores. In the low-production stage, gas production primarily originates from desorbed gas in remote well areas. In this stage, the production of CBM wells is determined by methane diffusion, with the accurate measurement of the diffusion coefficient and the development of dynamic diffusion models playing a crucial role. Notably, the diffusion coefficient exhibits significant anisotropy, yet current CH4 diffusion models seldom account for the anisotropic characteristics of coal structure. It is necessary to develop a time-varying CH4 diffusion model while considering the CH4 diffusion patterns across multi-scale pores and microfractures in coals. Experiments on the fine-scale characterization of multi-scale pores and fractures, combined with high-temperature with high-pressure nuclear magnetic resonance imaging, allow for the characterization of variations in CH4 density across different pore sizes. This systematic review integrates theories and practice, further laying a theoretical foundation for deep CBM recovery.

  • [1]
    申建,秦勇,傅雪海,等. 深部煤层气成藏条件特殊性及其临界深度探讨[J]. 天然气地球科学,2014,25(9):1470−1476.

    SHEN Jian,QIN Yong,FU Xuehai,et al. Properties of deep coalbed methane reservoir–forming conditions and critical depth discussion[J]. Natural Gas Geoscience,2014,25(9):1470−1476.
    [2]
    WANG Haichao,FU Xuehai,ZHANG Xiaoyang,et al. Source,age,and evolution of coal measures water in central–south Qinshui Basin,China[J]. Energy & Fuels,2018,32(7):7358−7373.
    [3]
    谢和平,高峰,鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报,2015,34(11):2161−2178.

    XIE Heping,GAO Feng,JU Yang. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2161−2178.
    [4]
    傅雪海,秦勇,权彪,等. 中煤级煤吸附甲烷的物理模拟与数值模拟研究[J]. 地质学报,2008,82(10):1368−1371. DOI: 10.3321/j.issn:0001-5717.2008.10.009

    FU Xuehai,QIN Yong,QUAN Biao,et al. Study of physical and numerical simulations of adsorption methane content on middle–rank coal[J]. Acta Geologica Sinica,2008,82(10):1368−1371. DOI: 10.3321/j.issn:0001-5717.2008.10.009
    [5]
    陈刚,李五忠. 鄂尔多斯盆地深部煤层气吸附能力的影响因素及规律[J]. 天然气工业,2011,31(10):47−49. DOI: 10.3787/j.issn.1000-0976.2011.10.010

    CHEN Gang,LI Wuzhong. Influencing factors and patterns of CBM adsorption capacity in the deep Ordos Basin[J]. Natural Gas Industry,2011,31(10):47−49. DOI: 10.3787/j.issn.1000-0976.2011.10.010
    [6]
    李松,汤达祯,许浩,等. 深部煤层气储层地质研究进展[J]. 地学前缘,2016,23(3):10−16.

    LI Song,TANG Dazhen,XU Hao,et al. Progress in geological researches on the deep coalbed methane reservoirs[J]. Earth Science Frontiers,2016,23(3):10−16.
    [7]
    MENG Zhaoping,ZHANG Jincai,WANG Rui. In–situ stress,pore pressure and stress–dependent permeability in the southern Qinshui Basin[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(1):122−131. DOI: 10.1016/j.ijrmms.2010.10.003
    [8]
    杨永杰,宋扬,陈绍杰,等. 煤岩强度离散性及三轴压缩试验研究[J]. 岩土力学,2006,27(10):1763−1766. DOI: 10.3969/j.issn.1000-7598.2006.10.024

    YANG Yongjie,SONG Yang,CHEN Shaojie,et al. Experimental study on strength discreteness and triaxial compression of coal[J]. Rock and Soil Mechanics,2006,27(10):1763−1766. DOI: 10.3969/j.issn.1000-7598.2006.10.024
    [9]
    李勇,徐立富,张守仁,等. 深煤层含气系统差异及开发对策[J]. 煤炭学报,2023,48(2):900−917.

    LI Yong,XU Lifu,ZHANG Shouren,et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society,2023,48(2):900−917.
    [10]
    李国富,侯泉林. 沁水盆地南部煤层气井排采动态过程与差异性[J]. 煤炭学报,2012,37(5):798−803.

    LI Guofu,HOU Quanlin. Dynamic process and difference of coalbed methane wells production in southern Qinshui Basin[J]. Journal of China Coal Society,2012,37(5):798−803.
    [11]
    叶建平,张健,王赞惟. 沁南潘河煤层气田生产特征及其控制因素[J]. 天然气工业,2011,31(5):28−30. DOI: 10.3787/j.issn.1000-0976.2011.05.007

    YE Jianping,ZHANG Jian,WANG Zanwei. Production performance and its controlling factors in the Panhe CMB Gas Field,southern Qinshui Basin[J]. Natural Gas Industry,2011,31(5):28−30. DOI: 10.3787/j.issn.1000-0976.2011.05.007
    [12]
    徐凤银,聂志宏,孙伟,等. 鄂尔多斯盆地东缘深部煤层气高效开发理论技术体系[J]. 煤炭学报,2024,49(1):528−544.

    XU Fengyin,NIE Zhihong,SUN Wei,et al. Theoretical and technological system for highly efficient development of deep coalbed methane in the eastern edge of Erdos Basin[J]. Journal of China Coal Society,2024,49(1):528−544.
    [13]
    聂志宏,时小松,孙伟,等. 大宁–吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探,2022,50(3):193−200. DOI: 10.12363/issn.1001-1986.21.12.0818

    NIE Zhihong,SHI Xiaosong,SUN Wei,et al. Production characteristics of deep coalbed methane gas reservoirs in Daning–Jixian Block and its development technology countermeasures[J]. Coal Geology & Exploration,2022,50(3):193−200. DOI: 10.12363/issn.1001-1986.21.12.0818
    [14]
    程远平,雷杨. 构造煤和煤与瓦斯突出关系的研究[J]. 煤炭学报,2021,46(1):180−198.

    CHENG Yuanping,LEI Yang. Causality between tectonic coal and coal and gas outbursts[J]. Journal of China Coal Society,2021,46(1):180−198.
    [15]
    叶桢妮,侯恩科,段中会,等. 不同煤体结构煤的孔隙–裂隙分形特征及其对渗透性的影响[J]. 煤田地质与勘探,2019,47(5):70−78. DOI: 10.3969/j.issn.1001-1986.2019.05.010

    YE Zhenni,HOU Enke,DUAN Zhonghui,et al. Fractal characteristics of pores and microfractures of coals with different structure and their effect on permeability[J]. Coal Geology & Exploration,2019,47(5):70−78. DOI: 10.3969/j.issn.1001-1986.2019.05.010
    [16]
    曹明亮,康永尚,邓泽,等. 煤阶和构造应力强度对煤岩力学性质的影响作用[J]. 煤炭科学技术,2019,47(12):45−55.

    CAO Mingliang,KANG Yongshang,DENG Ze,et al. Influence of coal rank and tectonic stress intensity on mechanical properties of coal rock[J]. Coal Science and Technology,2019,47(12):45−55.
    [17]
    蒋静宇,史孝宁,程远平,等. 急速卸压条件下构造煤体应力释放规律试验研究[J]. 采矿与安全工程学报,2024,41(3):634−644.

    JIANG Jingyu,SHI Xiaoning,CHENG Yuanping,et al. Study on stress release law of tectonic coal under rapid unloading confining pressure[J]. Journal of Mining and Safety Engineering,2024,41(3):634−644.
    [18]
    吕闰生,彭苏萍,徐延勇. 含瓦斯煤体渗透率与煤体结构关系的实验[J]. 重庆大学学报,2012,35(7):114−118. DOI: 10.11835/j.issn.1000-582X.2012.07.020

    LYU Runsheng,PENG Suping,XU Yanyong. Experiments on the relationship between permeability of gas–bearing coal and coal body structure[J]. Journal of Chongqing University,2012,35(7):114−118. DOI: 10.11835/j.issn.1000-582X.2012.07.020
    [19]
    郭红玉,苏现波,夏大平,等. 煤储层渗透率与地质强度指标的关系研究及意义[J]. 煤炭学报,2010,35(8):1319−1322.

    GUO Hongyu,SU Xianbo,XIA Daping,et al. Relationship of the permeability and geological strength index (GSI) of coal reservoir and its significance[J]. Journal of China Coal Society,2010,35(8):1319−1322.
    [20]
    FU Xuehai,QIN Yong,WANG G G X,et al. Evaluation of coal structure and permeability with the aid of geophysical logging technology[J]. Fuel,2009,88(11):2278−2285. DOI: 10.1016/j.fuel.2009.05.018
    [21]
    BUSSE J,DE DREUZY J R,TORRES S G,et al. Image processing based characterization of coal cleat networks[J]. International Journal of Coal Geology,2017,169:1−21. DOI: 10.1016/j.coal.2016.11.010
    [22]
    SCOTT A R. Hydrogeologic factors affecting gas content distribution in coal beds[J]. International Journal of Coal Geology,2002,50(1):363−387.
    [23]
    WANG Zhenzhi,PAN Jienan,HOU Quanlin,et al. Changes in the anisotropic permeability of low–rank coal under varying effective stress in Fukang Mining Area,China[J]. Fuel,2018,234:1481−1497. DOI: 10.1016/j.fuel.2018.08.013
    [24]
    KANG Junqiang,FU Xuehai,GAO Lin,et al. Production profile characteristics of large dip angle coal reservoir and its impact on coalbed methane production:A case study on the Fukang west block,southern Junggar Basin,China[J]. Journal of Petroleum Science and Engineering,2018,171:99−114. DOI: 10.1016/j.petrol.2018.07.044
    [25]
    WANG Zhenzhi,FU Xuehai,PAN Jienan,et al. The fracture anisotropic evolution of different ranking coals in Shanxi Province,China[J]. Journal of Petroleum Science and Engineering,2019,182:106281. DOI: 10.1016/j.petrol.2019.106281
    [26]
    WANG Zhenzhi,PAN Jienan,HOU Quanlin,et al. Anisotropic characteristics of low–rank coal fractures in the Fukang Mining Area,China[J]. Fuel,2018,211:182−193. DOI: 10.1016/j.fuel.2017.09.067
    [27]
    KOENIG P A,STUBBS P B. Interference testing of a coalbed methane reservoir[C]//SPE Unconventional Gas Technology Symposium. Louisville,1986.
    [28]
    WENIGER S,WENIGER P,LITTKE R. Characterizing coal cleats from optical measurements for CBM evaluation[J]. International Journal of Coal Geology,2016,154/155:176−192. DOI: 10.1016/j.coal.2015.12.005
    [29]
    LIU Shimin,WANG Yi,HARPALANI S. Anisotropy characteristics of coal shrinkage/swelling and its impact on coal permeability evolution with CO2 injection[J]. Greenhouse Gases:Science and Technology,2016,6(5):615−632. DOI: 10.1002/ghg.1592
    [30]
    ANGGARA F,SASAKI K,RODRIGUES S,et al. The effect of megascopic texture on swelling of a low rank coal in supercritical carbon dioxide[J]. International Journal of Coal Geology,2014,125:45−56. DOI: 10.1016/j.coal.2014.02.004
    [31]
    杨新乐,张永利. 气固耦合作用下温度对煤瓦斯渗透率影响规律的实验研究[J]. 地质力学学报,2008,14(4):374−380. DOI: 10.3969/j.issn.1006-6616.2008.04.007

    YANG Xinle,ZHANG Yongli. Experimental study of effect of temperature on coal gas permeability under gas–solid coupling[J]. Journal of Geomechanics,2008,14(4):374−380. DOI: 10.3969/j.issn.1006-6616.2008.04.007
    [32]
    胡耀青,赵阳升,杨栋,等. 温度对褐煤渗透特性影响的试验研究[J]. 岩石力学与工程学报,2010,29(8):1585−1590.

    HU Yaoqing,ZHAO Yangsheng,YANG Dong,et al. Experimental study of effect of temperature on permeability characteristics of lignite[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(8):1585−1590.
    [33]
    谢建林,赵阳升. 随温度升高煤岩体渗透率减小或波动变化的细观机制[J]. 岩石力学与工程学报,2017,36(3):543−551.

    XIE Jianlin,ZHAO Yangsheng. Meso–mechanism of permeability decrease or fluctuation of coal and rock with the temperature increase[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(3):543−551.
    [34]
    夏同强,王有湃,周福宝,等. 煤岩体应力–渗流–温度多过程耦合试验系统[J]. 中国矿业大学学报,2021,50(2):205−213.

    XIA Tongqiang,WANG Youpai,ZHOU Fubao,et al. The stress–seepage–temperature multi–process coupling test system for coal and rock mass[J]. Journal of China University of Mining & Technology,2021,50(2):205−213.
    [35]
    李宝林,魏国营. 不同温度煤裂隙流动优势性的热流固耦合数值模拟[J]. 煤炭科学技术,2020,48(11):141−146.

    LI Baolin,WEI Guoying. Numerical simulation of thermal–fluid–solid coupling of the flow dominance of coal under different temperature conditions[J]. Coal Science and Technology,2020,48(11):141−146.
    [36]
    秦勇,申建,王宝文,等. 深部煤层气成藏效应及其耦合关系[J]. 石油学报,2012,33(1):48−54. DOI: 10.7623/syxb201201006

    QIN Yong,SHEN Jian,WANG Baowen,et al. Accumulation effects and coupling relationship of deep coalbed methane[J]. Acta Petrolei Sinica,2012,33(1):48−54. DOI: 10.7623/syxb201201006
    [37]
    丁宝成,李佳芮,张秀平. 温度、应力对含瓦斯煤渗透特性影响的实验研究[J]. 世界科技研究与发展,2015,37(4):364−367.

    DING Baocheng,LI Jiarui,ZHANG Xiuping. Experimental study on permeability characteristics of coal containing gas influenced by temperature and stress[J]. World Sci–Tech R & D,2015,37(4):364−367.
    [38]
    QIN Yong,MOORE T A,SHEN Jian,et al. Resources and geology of coalbed methane in China:A review[J]. International Geology Review,2018,60(5/6):777−812.
    [39]
    刘大锰,周三栋,蔡益栋,等. 地应力对煤储层渗透性影响及其控制机理研究[J]. 煤炭科学技术,2017,45(6):1−8.

    LIU Dameng,ZHOU Sandong,CAI Yidong,et al. Study on effect of geo–stress on coal permeability and its controlling mechanism[J]. Coal Science and Technology,2017,45(6):1−8.
    [40]
    周德华,陈刚,陈贞龙,等. 中国深层煤层气勘探开发进展、关键评价参数与前景展望[J]. 天然气工业,2022,42(6):43−51. DOI: 10.3787/j.issn.1000-0976.2022.06.004

    ZHOU Dehua,CHEN Gang,CHEN Zhenlong,et al. Exploration and development progress,key evaluation parameters and prospect of deep CBM in China[J]. Natural Gas Industry,2022,42(6):43−51. DOI: 10.3787/j.issn.1000-0976.2022.06.004
    [41]
    段品佳,王芝银,翟雨阳,等. 煤层气排采初期阶段合理降压速率的研究[J]. 煤炭学报,2011,36(10):1689−1692.

    DUAN Pinjia,WANG Zhiyin,ZHAI Yuyang,et al. Research on reasonable depressurization rate in initial stage of exploitation to coal bed methane[J]. Journal of China Coal Society,2011,36(10):1689−1692.
    [42]
    李金平,潘军,李勇,等. 基于流动物质平衡理论的煤层气井定量化排采新方法[J]. 天然气工业,2023,43(6):87−95. DOI: 10.3787/j.issn.1000-0976.2023.06.008

    LI Jinping,PAN Jun,LI Yong,et al. A new CBM well quantitative production method based on the flow material balance theory[J]. Natural Gas Industry,2023,43(6):87−95. DOI: 10.3787/j.issn.1000-0976.2023.06.008
    [43]
    伊永祥,唐书恒,张松航,等. 沁水盆地柿庄南区块煤层气井储层压降类型及排采控制分析[J]. 煤田地质与勘探,2019,47(5):118−126. DOI: 10.3969/j.issn.1001-1986.2019.05.016

    YI Yongxiang,TANG Shuheng,ZHANG Songhang,et al. Analysis on the type of reservoir pressure drop and drainage control of coalbed methane well in the southern block of Shizhuang[J]. Coal Geology & Exploration,2019,47(5):118−126. DOI: 10.3969/j.issn.1001-1986.2019.05.016
    [44]
    张遂安,曹立虎,杜彩霞. 煤层气井产气机理及排采控压控粉研究[J]. 煤炭学报,2014,39(9):1927−1931.

    ZHANG Sui’an,CAO Lihu,DU Caixia. Study on CBM production mechanism and control theory of bottom–hole pressure and coal fines during CBM well production[J]. Journal of China Coal Society,2014,39(9):1927−1931.
    [45]
    吴建发,樊怀才,张鉴,等. 页岩人工裂缝应力敏感性实验研究:以川南地区龙马溪组页岩为例[J]. 天然气工业,2022,42(2):71−81. DOI: 10.3787/j.issn.1000-0976.2022.02.008

    WU Jianfa,FAN Huaicai,ZHANG Jian,et al. An experimental study on stress sensitivity of hydraulic fractures in shale:A case study on Longmaxi Formation shale in the southern Sichuan Basin[J]. Natural Gas Industry,2022,42(2):71−81. DOI: 10.3787/j.issn.1000-0976.2022.02.008
    [46]
    韦涛,张争光,牛志刚,等. 深部与浅部煤层气储层物性及开发工程差异分析[J]. 煤炭技术,2018,37(2):58−60.

    WEI Tao,ZHANG Zhengguang,NIU Zhigang,et al. Analysis of physical properties and engineering difference between deep coal seam and shallow coal seam[J]. Coal Technology,2018,37(2):58−60.
    [47]
    MENG Zhaoping,LI Guoqing. Experimental research on the permeability of high–rank coal under a varying stress and its influencing factors[J]. Engineering Geology,2013,162:108−117. DOI: 10.1016/j.enggeo.2013.04.013
    [48]
    LI Yong,TANG Dazhen,XU Hao,et al. In–situ stress distribution and its implication on coalbed methane development in Liulin area,eastern Ordos Basin,China[J]. Journal of Petroleum Science and Engineering,2014,122:488−496. DOI: 10.1016/j.petrol.2014.08.010
    [49]
    宋昱,姜波,王猛,等. 煤缩合芳环应力响应:对无烟煤石墨化的启示[J]. 煤炭学报,2022,47(12):4336−4351.

    SONG Yu,JIANG Bo,WANG Meng,et al. Stress response of coal condensed aromatic ring:Inspiration for graphitization of anthracite[J]. Journal of China Coal Society,2022,47(12):4336−4351.
    [50]
    高向东,王延斌,倪小明,等. 临兴地区深部煤岩力学性质及其对煤储层压裂的影响[J]. 煤炭学报,2020,45(增刊2):912−921.

    GAO Xiangdong,WANG Yanbin,NI Xiaoming,et al. Mechanical properties of deep coal and rock in Linxing area and its influences on fracturing of deep coal reservoir[J]. Journal of China Coal Society,2020,45(Sup.2):912−921.
    [51]
    熊先钺,闫霞,徐凤银,等. 深部煤层气多要素耦合控制机理、解吸规律与开发效果剖析[J]. 石油学报,2023,44(11):1812−1826. DOI: 10.7623/syxb202311005

    XIONG Xianyue,YAN Xia,XU Fengyin,et al. Analysis of multi–factor coupling control mechanism,desorption law and development effect of deep coalbed methane[J]. Acta Petrolei Sinica,2023,44(11):1812−1826. DOI: 10.7623/syxb202311005
    [52]
    NIU Qinghe,CAO Liwen,SANG Shuxun,et al. Experimental study of permeability changes and its influencing factors with CO2 injection in coal[J]. Journal of Natural Gas Science and Engineering,2019,61:215−225. DOI: 10.1016/j.jngse.2018.09.024
    [53]
    康永尚,皇甫玉慧,张兵,等. 含煤盆地深层“超饱和”煤层气形成条件[J]. 石油学报,2019,40(12):1426−1438. DOI: 10.7623/syxb201912002

    KANG Yongshang,HUANGFU Yuhui,ZHANG Bing,et al. Formation conditions for deep oversaturated coalbed methane in coal–bearing basins[J]. Acta Petrolei Sinica,2019,40(12):1426−1438. DOI: 10.7623/syxb201912002
    [54]
    FAN Nan,WANG Jiren,DENG Cunbao,et al. Numerical study on enhancing coalbed methane recovery by injecting N2/CO2 mixtures and its geological significance[J]. Energy Science & Engineering,2020,8(4):1104−1119.
    [55]
    降文萍,崔永君,钟玲文,等. 煤中水分对煤吸附甲烷影响机理的理论研究[J]. 天然气地球科学,2007,18(4):576−579. DOI: 10.3969/j.issn.1672-1926.2007.04.019

    JIANG Wenping,CUI Yongjun,ZHONG Lingwen,et al. Quantum chemical study on coal surface interacting with CH4 and H2O[J]. Natural Gas Geoscience,2007,18(4):576−579. DOI: 10.3969/j.issn.1672-1926.2007.04.019
    [56]
    LIU Yu,ZHU Yanming,LIU Shimin,et al. Molecular structure controls on micropore evolution in coal vitrinite during coalification[J]. International Journal of Coal Geology,2018,199:19−30. DOI: 10.1016/j.coal.2018.09.012
    [57]
    潘结南,徐海飞. 河南省中–高煤阶构造变形煤甲烷吸附/解吸特征研究[J]. 煤炭科学技术,2015,43(2):29−32.

    PAN Jienan,XU Haifei. Study on characteristics of adsorption/desorption of medium and high rank tectonic deformation coals in Henan Province[J]. Coal Science and Technology,2015,43(2):29−32.
    [58]
    CHENG Guoxi,JIANG Bo,LI Ming,et al. Effects of pore structure on methane adsorption behavior of ductile tectonically deformed coals:An inspiration to coalbed methane exploitation in structurally complex area[J]. Journal of Natural Gas Science and Engineering,2020,74:103083. DOI: 10.1016/j.jngse.2019.103083
    [59]
    王青青,孟艳军,闫涛滔,等. 不同煤阶煤储层吸附/解吸特征差异及其对产能的影响[J]. 煤田地质与勘探,2023,51(5):66−77. DOI: 10.12363/issn.1001-1986.22.10.0816

    WANG Qingqing,MENG Yanjun,YAN Taotao,et al. Differences in the absorption/desorption characteristics of coal reservoirs with different coal ranks and their effects on the reservoir productivity[J]. Coal Geology & Exploration,2023,51(5):66−77. DOI: 10.12363/issn.1001-1986.22.10.0816
    [60]
    侯伟,徐凤银,张雷,等. 煤岩类型对煤储层吸附/解吸特征影响及实践意义:以保德区块为例[J]. 煤田地质与勘探,2022,50(3):110−118. DOI: 10.12363/issn.1001-1986.21.12.0864

    HOU Wei,XU Fengyin,ZHANG Lei,et al. Influence of coal lithotypes on adsorption/desorption characteristics in coal reservoirs and its practical significance:A case study in Baode Block[J]. Coal Geology & Exploration,2022,50(3):110−118. DOI: 10.12363/issn.1001-1986.21.12.0864
    [61]
    WANG Zhenzhi,FU Xuehai,HAO Ming,et al. Experimental insights into the adsorption–desorption of CH4/N2 and induced strain for medium–rank coals[J]. Journal of Petroleum Science and Engineering,2021,204:108705. DOI: 10.1016/j.petrol.2021.108705
    [62]
    傅雪海,秦勇,叶建平,等. 中国部分煤储层解吸特性及甲烷采收率[J]. 煤田地质与勘探,2000,28(2):19−22. DOI: 10.3969/j.issn.1001-1986.2000.02.006

    FU Xuehai,QIN Yong,YE Jianping,et al. Desorption properties of some coal reservoirs and methane recovery rate in China[J]. Coal Geology & Exploration,2000,28(2):19−22. DOI: 10.3969/j.issn.1001-1986.2000.02.006
    [63]
    陈向军,程远平,王林. 外加水分对煤中瓦斯解吸抑制作用试验研究[J]. 采矿与安全工程学报,2013,30(2):296−301.

    CHEN Xiangjun,CHENG Yuanping,WANG Lin. Experimental study on the inhibition of injection water to the gas desorption of coal[J]. Journal of Mining & Safety Engineering,2013,30(2):296−301.
    [64]
    马金魁,陈勇. 变质程度对煤样瓦斯解吸特征参数V1值的影响实验研究[J]. 煤矿安全,2019,50(9):29−33.

    MA Jinkui,CHEN Yong. Experimental research on influence of metamorphic degree on V1 value of gas desorption characteristics of coal samples[J]. Safety in Coal Mines,2019,50(9):29−33.
    [65]
    李伍,杨文斌,战星羽,等. 煤有机大分子碳结构石墨化机制[J]. 煤炭学报,2023,48(2):855−868.

    LI Wu,YANG Wenbin,ZHAN Xingyu,et al. Graphitization mechanism of coal organic macromolecular carbon structure[J]. Journal of China Coal Society,2023,48(2):855−868.
    [66]
    张先敏,冯其红,张纪远,等. 考虑吸附滞后效应的煤层气藏物质平衡方程建立及应用[J]. 煤炭学报,2017,42(10):2662−2669.

    ZHANG Xianmin,FENG Qihong,ZHANG Jiyuan,et al. Establishment and application of material balance equations for coalbed methane reservoirs considering adsorption hysteresis effect[J]. Journal of China Coal Society,2017,42(10):2662−2669.
    [67]
    FENG Zengchao,WANG Chen,DONG Dong,et al. Experimental study of the characteristic changes of coal resistivity during the gas adsorption/desorption process[J]. Advances in Materials Science and Engineering,2018,2018(1):1450187. DOI: 10.1155/2018/1450187
    [68]
    王振至. 不同煤级煤N2–ECBM过程中吸附/解吸诱导应变及渗透率研究[D]. 徐州:中国矿业大学,2021.

    WANG Zhenzhi. Investigation of the adsorption/desorption,induced strain and permeability in different rank coal N2–ECBM process[D]. Xuzhou:China University of Mining and Technology,2021.
    [69]
    田永东,武杰. 沁水盆地南部高煤阶煤储层敏感性[J]. 煤炭学报,2014,39(9):1835−1839.

    TIAN Yongdong,WU Jie. Sensitivity of high–rank coal–bed methane reservoir in the southern Qinshui Basin[J]. Journal of China Coal Society,2014,39(9):1835−1839.
    [70]
    SAURABH S,HARPALANI S,SINGH V K. Implications of stress re–distribution and rock failure with continued gas depletion in coalbed methane reservoirs[J]. International Journal of Coal Geology,2016,162:183−192. DOI: 10.1016/j.coal.2016.06.006
    [71]
    WANG Zhenzhi,DENG Ze,FU Xuehai,et al. Effects of methane saturation and nitrogen pressure on N2–enhanced coalbed methane desorption strain characteristics of medium–rank coal[J]. Natural Resources Research,2021,30:1527−1545. DOI: 10.1007/s11053-020-09783-4
    [72]
    傅雪海,张小东,韦重韬. 煤层含气量的测试、模拟与预测研究进展[J]. 中国矿业大学学报,2021,50(1):13−31.

    FU Xuehai,ZHANG Xiaodong,WEI Chongtao. Review of research on testing,simulation and prediction of coalbed methane content[J]. Journal of China University of Mining and Technology,2021,50(1):13−31.
    [73]
    WANG Zhenzhi,FU Xuehai,PAN Jienan,et al. Effect of N2/CO2 injection and alternate injection on volume swelling/shrinkage strain of coal[J]. Energy,2023,275:127377. DOI: 10.1016/j.energy.2023.127377
    [74]
    ZHANG Baoxin,FU Xuehai,DENG Ze,et al. A comparative study on the deformation of unconfined coal during the processes of methane desorption with successively decreasing outlet pressure and with constant outlet pressure[J]. Journal of Petroleum Science and Engineering,2020,195:107531. DOI: 10.1016/j.petrol.2020.107531
    [75]
    WANG Zhenzhi,FU Xuehai,DENG Ze,et al. Investigation of adsorption–desorption,induced strains and permeability evolution during N2–ECBM recovery[J]. Natural Resources Research,2021,30(5):3717−3734. DOI: 10.1007/s11053-021-09884-8
    [76]
    PAN Jienan,LYU Minmin,HOU Quanlin,et al. Coal microcrystalline structural changes related to methane adsorption/desorption[J]. Fuel,2019,239:13−23. DOI: 10.1016/j.fuel.2018.10.155
    [77]
    MUKHERJEE M,MISRA S. A review of experimental research on enhanced coal bed methane (ECBM) recovery via CO2 sequestration[J]. Earth–Science Reviews,2018,179:392−410.
    [78]
    PILLALAMARRY M,HARPALANI S,LIU Shimin. Gas diffusion behavior of coal and its impact on production from coalbed methane reservoirs[J]. International Journal of Coal Geology,2011,86(4):342−348. DOI: 10.1016/j.coal.2011.03.007
    [79]
    PLAZINSKI W,DZIUBA J,RUDZINSKI W. Modeling of sorption kinetics:The pseudo–second order equation and the sorbate intraparticle diffusivity[J]. Adsorption,2013,19(5):1055−1064. DOI: 10.1007/s10450-013-9529-0
    [80]
    WANG Zhenzhi,DENG Ze,FU Xuehai,et al. Dynamic monitoring of induced strain during N2–ECBM of coal with different gas contents[J]. Energy & Fuels,2021,35(4):3140−3149.
    [81]
    STAIB G,SAKUROVS R,GRAY E M A. Dispersive diffusion of gases in coals. Part I:Model development[J]. Fuel,2015,143:612−619. DOI: 10.1016/j.fuel.2014.11.086
    [82]
    STAIB G,SAKUROVS R,GRAY E M A. Kinetics of coal swelling in gases:Influence of gas pressure,gas type and coal type[J]. International Journal of Coal Geology,2014,132:117−122. DOI: 10.1016/j.coal.2014.08.005
    [83]
    李贵红,吴信波,刘钰辉,等. 沁水潘庄煤层气井全生命周期产气规律与效果[J]. 煤炭学报,2020,45(增刊2):894−903.

    LI Guihong,WU Xinbo,LIU Yuhui,et al. Full life–circle production and effect evaluation of Panzhuang coalbed methane wells in Qinshui Basin[J]. Journal of China Coal Society,2020,45(Sup.2):894−903.
    [84]
    刘厅. 深部裂隙煤体瓦斯抽采过程中的多场耦合机制及其工程响应[D]. 徐州:中国矿业大学,2019.

    LIU Ting. Multifield coupling processes during gas drainage in deep fractured coal seam and its engineering response[D]. Xuzhou:China University of Mining and Technology,2019.
    [85]
    李志强,成墙,刘彦伟,等. 柱状煤芯瓦斯扩散模型与扩散特征实验研究[J]. 中国矿业大学学报,2017,46(5):1033−1040.

    LI Zhiqiang,CHENG Qiang,LIU Yanwei,et al. Research on gas diffusion model and experimental diffusion characteristic of cylindrical coal[J]. Journal of China University of Mining & Technology,2017,46(5):1033−1040.
    [86]
    刘正东. 高应力煤体物理结构演化特性对瓦斯运移影响机制研究[D]. 徐州:中国矿业大学,2020.

    LIU Zhengdong. Research on physical structure evolution characteristic of coal mass under high stress condition and its influence on gas migration[D]. Xuzhou:China University of Mining and Technology,2020.
    [87]
    CHARRIERE D,POKRYSZKA Z,BEHRA P. Effect of pressure and temperature on diffusion of CO2 and CH4 into coal from the Lorraine Basin (France)[J]. International Journal of Coal Geology,2010,81(4):373−380. DOI: 10.1016/j.coal.2009.03.007
    [88]
    WANG Yi,LIU Shimin. Estimation of pressure–dependent diffusive permeability of coal using methane diffusion coefficient:Laboratory measurements and modeling[J]. Energy & Fuels,2016,30(11):8968−8976.
    [89]
    XU Hao,TANG Dazhe,ZHAO Junlong,et al. A new laboratory method for accurate measurement of the methane diffusion coefficient and its influencing factors in the coal matrix[J]. Fuel,2015,158:239−247. DOI: 10.1016/j.fuel.2015.05.046
    [90]
    YANG Bin,KANG Yili,YOU Lijun,et al. Measurement of the surface diffusion coefficient for adsorbed gas in the fine mesopores and micropores of shale organic matter[J]. Fuel,2016,181:793−804. DOI: 10.1016/j.fuel.2016.05.069
    [91]
    YUAN Weina,PAN Zhejun,LI Xiao,et al. Experimental study and modelling of methane adsorption and diffusion in shale[J]. Fuel,2014,117:509−519. DOI: 10.1016/j.fuel.2013.09.046
    [92]
    李祥春,李忠备,张良,等. 不同煤阶煤样孔隙结构表征及其对瓦斯解吸扩散的影响[J]. 煤炭学报,2019,44(增刊1):142−156.

    LI Xiangchun,LI Zhongbei,ZHANG Liang,et al. Pore structure characterization of various rank coals and its effect on gas desorption and diffusion[J]. Journal of China Coal Society,2019,44(Sup.1):142−156.
    [93]
    WANG Kai,ZANG Jie,FENG Yufeng,et al. Effects of moisture on diffusion kinetics in Chinese coals during methane desorption[J]. Journal of Natural Gas Science and Engineering,2014,21:1005−1014. DOI: 10.1016/j.jngse.2014.10.032
    [94]
    KARACAN C Ö,MITCHELL G D. Behavior and effect of different coal microlithotypes during gas transport for carbon dioxide sequestration into coal seams[J]. International Journal of Coal Geology,2003,53(4):201−217. DOI: 10.1016/S0166-5162(03)00030-2
    [95]
    李阳. 构造煤多尺度孔隙结构与瓦斯扩散分形特征[D]. 焦作:河南理工大学,2019.

    LI Yang. Fractal characteristics of multi–scale pore structure and gas diffusion in tectonic coal[D]. Jiaozuo:Henan Polytechnic University,2019.
    [96]
    刘大锰,刘正帅,蔡益栋. 煤层气成藏机理及形成地质条件研究进展[J]. 煤炭科学技术,2020,48(10):1−16.

    LIU Dameng,LIU Zhengshuai,CAI Yidong. Research progress on accumulation mechanism and formation geological conditions of coalbed methane[J]. Coal Science and Technology,2020,48(10):1−16.
    [97]
    秦跃平,徐浩,毋凡,等. 密度梯度驱动的煤粒瓦斯解吸扩散模型及试验研究[J]. 煤炭科学技术,2022,50(1):169−176. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201016

    QIN Yueping,XU Hao,WU Fan,et al. Gas desorption and diffusion model driven by density gradient in coal particle and its experimental study[J]. Coal Science and Technology,2022,50(1):169−176. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201016
    [98]
    NIU Qinghe,CAO Liwen,SANG Shuxun,et al. Anisotropic adsorption swelling and permeability characteristics with injecting CO2 in coal[J]. Energy & Fuels,2017,32(2):1979−1991.
    [99]
    SAURABH S,HARPALANI S. Anisotropy of coal at various scales and its variation with sorption[J]. International Journal of Coal Geology,2019,201:14−25. DOI: 10.1016/j.coal.2018.11.008
    [100]
    TAN Yuling,PAN Zhejun,LIU Jishan,et al. Experimental study of impact of anisotropy and heterogeneity on gas flow in coal. Part I:Diffusion and adsorption[J]. Fuel,2018,232:444−453. DOI: 10.1016/j.fuel.2018.05.173
    [101]
    ZHAO Wei,CHENG Yuanping,PAN Zhejun,et al. Gas diffusion in coal particles:A review of mathematical models and their applications[J]. Fuel,2019,252:77−100. DOI: 10.1016/j.fuel.2019.04.065
    [102]
    房祥龙,蔡益栋,刘大锰. 基于低场核磁共振法的甲烷扩散特征研究[J]. 中国煤炭地质,2021,33(10):31−38. DOI: 10.3969/j.issn.1674-1803.2021.10.05

    FANG Xianglong,CAI Yidong,LIU Dameng. Study on methane diffusion features based on low–field nuclear magnetic resonance (LF–NMR) method[J]. Coal Geology of China,2021,33(10):31−38. DOI: 10.3969/j.issn.1674-1803.2021.10.05
    [103]
    王凯,赵伟. 煤孔隙空间几何特征对瓦斯解吸曲线形态的控制机制研究进展[J]. 中国科学基金,2021,35(6):917−923.

    WANG Kai,ZHAO Wei. Research progress on the control mechanism of coal pore space geometric characteristics on the shape of gas desorption curves[J]. Bulletin of National Natural Science Foundation of China,2021,35(6):917−923.
    [104]
    MATHIAS S A,DENTZ M,LIU Qingquan. Gas diffusion in coal powders is a multi–rate process[J]. Transport in Porous Media,2020,131(3):1037−1051. DOI: 10.1007/s11242-019-01376-x
    [105]
    李相方,石军太,杜希瑶,等. 煤层气藏开发降压解吸气运移机理[J]. 石油勘探与开发,2012,39(2):203−213.

    LI Xiangfang,SHI Juntai,DU Xiyao,et al. Transport mechanism of desorbed gas in coalbed methane reservoirs[J]. Petroleum Exploration and Development,2012,39(2):203−213.
    [106]
    徐凤银,肖芝华,陈东,等. 我国煤层气开发技术现状与发展方向[J]. 煤炭科学技术,2019,47(10):205−215.

    XU Fengyin,XIAO Zhihua,CHEN Dong,et al. Current status and development direction of coalbed methane exploration technology in China[J]. Coal Science and Technology,2019,47(10):205−215.
    [107]
    刘操,张玉贵,贾天让,等. 气源岩吸附试验的机理及吸附特征新认识[J]. 煤炭学报,2019,44(11):3441−3452.

    LIU Cao,ZHANG Yugui,JIA Tianrang,et al. New interpretation of adsorption test mechanism and adsorption law for gas source rock[J]. Journal of China Coal Society,2019,44(11):3441−3452.
    [108]
    朱汉卿,贾爱林,位云生,等. 蜀南地区富有机质页岩孔隙结构及超临界甲烷吸附能力[J]. 石油学报,2018,39(4):391−401. DOI: 10.7623/syxb201804003

    ZHU Hanqing,JIA Ailin,WEI Yunsheng,et al. Pore structure and supercritical methane sorption capacity of organic–rich shales in southern Sichuan Basin[J]. Acta Petrolei Sinica,2018,39(4):391−401. DOI: 10.7623/syxb201804003
    [109]
    董银涛,鞠斌山,刘楠楠. 页岩甲烷高压等温吸附模型评价与改进[J]. 煤炭学报,2020,45(9):3208−3218.

    DONG Yintao,JU Binshan,LIU Nannan. Evaluation and improvement of high–pressure isothermal adsorption model for methane in shale[J]. Journal of China Coal Society,2020,45(9):3208−3218.
    [110]
    HU Biao,CHENG Yuanping,HE Xinxin,et al. New insights into the CH4 adsorption capacity of coal based on microscopic pore properties[J]. Fuel,2020,262:116675. DOI: 10.1016/j.fuel.2019.116675
    [111]
    张新宾,宋党育,李云波,等. 超临界态甲烷密度研究[J]. 煤田地质与勘探,2021,49(1):137−142. DOI: 10.3969/j.issn.1001-1986.2021.01.014

    ZHANG Xinbin,SONG Dangyu,LI Yunbo,et al. Study on density of the supercritical methane[J]. Coal Geology & Exploration,2021,49(1):137−142. DOI: 10.3969/j.issn.1001-1986.2021.01.014
    [112]
    YAO Yanbin,LIU Dameng,XIE Songbin. Quantitative characterization of methane adsorption on coal using a low–field NMR relaxation method[J]. International Journal of Coal Geology,2014,131:32−40. DOI: 10.1016/j.coal.2014.06.001

Catalog

    Article Metrics

    Article views (85) PDF downloads (38) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return