NING Dianyan,ZHU KaiPeng,ZHU Yongsheng,et al. A method for high-accuracy localization of microseismic sources in mines based on finite element simulation[J]. Coal Geology & Exploration,2025,53(2):167−178. DOI: 10.12363/issn.1001-1986.24.10.0615
Citation: NING Dianyan,ZHU KaiPeng,ZHU Yongsheng,et al. A method for high-accuracy localization of microseismic sources in mines based on finite element simulation[J]. Coal Geology & Exploration,2025,53(2):167−178. DOI: 10.12363/issn.1001-1986.24.10.0615

A method for high-accuracy localization of microseismic sources in mines based on finite element simulation

More Information
  • Received Date: October 07, 2024
  • Revised Date: February 18, 2025
  • Objective and Methods 

    Microseismic monitoring technology for mines can reflect the deformations and failure of rock layers by capturing low-frequency vibration signals their internal structure generated during the stress-induced deformation and failure of them. Accordingly, water inrush warnings and geologic hazard prediction can be achieved. Acoustic source localization, allowing for the localization of energy release and the early warning of potential hazards, plays a key role in this technology. Presently, when used for acoustic source localization, the time difference of arrival (TDOA) method is facing issues including high algorithmic complexity, significant impacts of probe arrangement on the localization accuracy, and low adaptability to complex stratigraphic structures. Using the finite element method, this study simulated the elastic wave propagation in various stratigraphic structures. Considering the transmission, reflection, and diffraction effects at various stratigraphic boundaries, this study investigated the impacts of various inversion models and probe arrangements on the localization accuracy.

    Results and Conclusions 

    The results indicate that the point source control models can effectively simulate the elastic wave propagation in rocks, with the orthogonal probe arrangement delivering superior performance in the acoustic source localization. In planar homogeneous materials, compared to the probe sets arranged in double triangles, the probe sets arranged in a single square exhibited a decrease of 0.6% in the localization error, while probe sets arranged in double squares displayed an increase of 1.69% in the localization accuracy. In a planar layered structure, compared to uniform velocity inversion, the transmission inversion increased the localization accuracy by 15% in the case of probe sets with a double triangle arrangement and by 14.9% for a probe set with a double square arrangement. In a three-dimensional layered structure, compared to uniform velocity inversion, the transmission inversion increased the localization accuracy by 14.5% in the case of the probe set arranged in a trirectangular tetrahedron. Overall, the inversion method produces more significant impacts on the localization accuracy than the probe arrangement, and the proposed numerical method enables high-accuracy, rapid acoustic source localization using the TDOA method and transmission inversion. The results of this study provide a valuable reference for optimizing microseismic monitoring and early warning systems for mines.

  • [1]
    尹尚先,徐斌,尹慧超,等. 矿井水防治学科基本架构及内涵[J]. 煤炭科学技术,2023,51(7):24−35.

    YIN Shangxian,XU Bin,YIN Huichao,et al. Basic structure and connotation of mine water prevention and control discipline[J]. Coal Science and Technology,2023,51(7):24−35.
    [2]
    刘其声. 关于突水系数的讨论[J]. 煤田地质与勘探,2009,37(4):34−37. DOI: 10.3969/j.issn.1001-1986.2009.04.009

    LIU Qisheng. A discussion on water inrush coefficient[J]. Coal Geology & Exploration,2009,37(4):34−37. DOI: 10.3969/j.issn.1001-1986.2009.04.009
    [3]
    武强. 煤矿防治水细则解读[M]. 北京:煤炭工业出版社,2018.
    [4]
    尹尚先,连会青,徐斌,等. 深部带压开采:传承与创新[J]. 煤田地质与勘探,2021,49(1):170−181. DOI: 10.3969/j.issn.1001-1986.2021.01.018

    YIN Shangxian,LIAN Huiqing,XU Bin,et al. Deep mining under safe water pressure of aquifer:Inheritance and innovation[J]. Coal Geology & Exploration,2021,49(1):170−181. DOI: 10.3969/j.issn.1001-1986.2021.01.018
    [5]
    丁湘,申斌学,郑忠友,等. 深部侏罗系矿井充水强度评价与水害风险管控[M]. 北京:应急管理出版社,2022.
    [6]
    张文泉,王在勇,吴欣焘,等. 顶板离层水突涌模式及预防技术模拟研究[J]. 煤田地质与勘探,2021,49(1):217−224. DOI: 10.3969/j.issn.1001-1986.2021.01.023

    ZHANG Wenquan,WANG Zaiyong,WU Xintao,et al. Investigation and simulation on the model and prevention technology of water inrush from roof bed separation[J]. Coal Geology & Exploration,2021,49(1):217−224. DOI: 10.3969/j.issn.1001-1986.2021.01.023
    [7]
    LU Caiping,DOU Linming,ZHANG Nong,et al. Microseismic and acoustic emission effect on gas outburst hazard triggered by shock wave:A case study[J]. Natural Hazards,2014,73(3):1715−1731. DOI: 10.1007/s11069-014-1167-7
    [8]
    KOERNER R M,LORD A E JR. Application of acoustic emission in the geotechnical area[J]. The Journal of the Acoustical Society of America,1978,64(Sup.1):S175.
    [9]
    DONG Longjun,ZOU Wei,LI Xibing,et al. Collaborative localization method using analytical and iterative solutions for microseismic/acoustic emission sources in the rockmass structure for underground mining[J]. Engineering Fracture Mechanics,2019,210:95−112. DOI: 10.1016/j.engfracmech.2018.01.032
    [10]
    SURDI A A,EKART D D,DURAN P,et al. Possible sources of acoustic emission events during hydraulic fracturing[C]//The 44th U. S. Rock Mechanics Symposium and 5th U. S. –Canada Rock Mechanics Symposium. Salt Lake City,2010:ARMA-10-478.
    [11]
    SCOTT T E JR,ZENG Zhengwen,ROEGIERS J C. Acoustic emission imaging of induced asymmetrical hydraulic fractures[C]//The 4th North American Rock Mechanics Symposium. Seattle,2000:ARMA-2000-2129.
    [12]
    GHOSH A,HSIUNG S M. Acoustic emission as an indicator of macrofailure of rock[C]//The 4th North American Rock Mechanics Symposium. Seattle,2000:ARMA-2000-1135.
    [13]
    HAMPTON J,FRASH L,GUTIERREZ M. Investigation of laboratory hydraulic fracture source mechanisms using acoustic emission[C]//The 47th U. S. Rock Mechanics/Geomechanics Symposium. San Francisco,2013:ARMA-2013-315.
    [14]
    BUNGER A P,KEAR J,DYSKIN A V,et al. Interpreting post–injection acoustic emission in laboratory hydraulic fracturing experiments[C]//The 48th U. S. Rock Mechanics/Geomechanics Symposium. Minneapolis,2014:ARMA-2014-6973.
    [15]
    STANCHITS S,BURGHARDT J,SURDI A,et al. Acoustic emission monitoring of heterogeneous rock hydraulic fracturing[C]//The 48th U. S. Rock Mechanics/Geomechanics Symposium. Minneapolis,2014:ARMA-2014-7775.
    [16]
    MOLENDA M,STÖCKHERT F,BRENNE S,et al. Acoustic emission monitoring of laboratory scale hydraulic fracturing experiments[C]//The 49th U. S. Rock Mechanics/Geomechanics Symposium. San Francisco,2015:ARMA-2015-069.
    [17]
    NOMIKOS P P,SAKKAS K M,SOFIANOS A I. Acoustic emission of Dionysos marble specimens in uniaxial compression[C]//The 12th ISRM Congress. Beijing,2011:ARMA-12CONGRESS-2011-132.
    [18]
    KANG Y M. Acoustic emission signal processing based on wavelet analysis[C]//The ISRM International Symposium–5th Asian Rock Mechanics Symposium. Tehran,2008:ISRM-ARMSS-2008-037.
    [19]
    XIE Qiang,ZHANG Yongxing,YU Xianbin. Study on acoustic emission of limestone in uniaxial compression test[J]. Journal of Civil and Environmental Engineering,2002,24(1):19.
    [20]
    TUOKKO T,POUTANEN M S. Acoustic emission based rock stress measurement method[C]//The ISRM Regional Symposium–EUROCK 2009. Cavtat,2009:ISRM-EVROCK-2010-061.
    [21]
    SLATALLA N,ALBER M. Characteristic acoustic emission response of sandstone samples in uniaxial compression[C]//The ISRM International Symposium–EUROCK 2010. Lausanne,2010:ISRM-EVROCK-2010-013.
    [22]
    TAVALLALI A,VERVOORT A. Acoustic emission monitoring of layered sandstone under Brazilian test conditions[C]//The ISRM International Symposium–EUROCK 2010. Lausanne,2010:ISRM-EVROCK-2010-015.
    [23]
    杨健,王连俊. 岩爆机理声发射试验研究[J]. 岩石力学与工程学报,2005,24(20):3796−3802. DOI: 10.3321/j.issn:1000-6915.2005.20.031

    YANG Jian,WANG Lianjun. Study on mechanism of rock burst by acoustic emission testing[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(20):3796−3802. DOI: 10.3321/j.issn:1000-6915.2005.20.031
    [24]
    CHEN Z H,TANG C A,HUANG R Q. A double rock sample model for rockbursts[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(6):991−1000. DOI: 10.1016/S1365-1609(97)80008-1
    [25]
    MARTIN C D,CHRISTIANSSON R C. Overcoring in highly stressed granite:Comparison of USBM and modified CSIR devices[J]. Rock Mechanics and Rock Engineering,1991,24(4):207−235. DOI: 10.1007/BF01045032
    [26]
    HARMON L,WEIR J T,BROCK C D,et al. GEIGER:Investigating evolutionary radiations[J]. Bioinformatics,2008,24(1):129−131. DOI: 10.1093/bioinformatics/btm538
    [27]
    孔韩东,边银菊,刘瑞丰,等. 地震定位方法研究进展[J]. 地震地磁观测与研究,2017,38(4):81−92. DOI: 10.3969/j.issn.1003-3246.2017.04.014

    KONG Handong,BIAN Yinju,LIU Ruifeng,et al. Review of seismic location study[J]. Seismological and Geomagnetic Observation and Research,2017,38(4):81−92. DOI: 10.3969/j.issn.1003-3246.2017.04.014
    [28]
    陈炳瑞,冯夏庭,李庶林,等. 基于粒子群算法的岩体微震源分层定位方法[J]. 岩石力学与工程学报,2009,28(4):740−749. DOI: 10.3321/j.issn:1000-6915.2009.04.012

    CHEN Bingrui,FENG Xiating,LI Shulin,et al. Microseism source location with hierarchical strategy based on particle swarm optimization[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(4):740−749. DOI: 10.3321/j.issn:1000-6915.2009.04.012
    [29]
    王辉,梁苗,朱梦博. 基于单纯形–最短路径射线追踪的微震震源混合定位算法[J]. 中国矿业,2020,29(10):110−115. DOI: 10.12075/j.issn.1004-4051.2020.10.011

    WANG Hui,LIANG Miao,ZHU Mengbo. A hybrid microseismic source location algorithm based on simplex and shortest path ray tracing[J]. China Mining Magazine,2020,29(10):110−115. DOI: 10.12075/j.issn.1004-4051.2020.10.011
    [30]
    黄晓红,孙国庆,张凯月,等. 基于多次互相关和Geiger算法的声发射源定位研究[J]. 矿业研究与开发,2016,36(7):77−81.

    HUANG Xiaohong,SUN Guoqing,ZHANG Kaiyue,et al. Research on source location of acoustic emission based on multiple cross correlation and Geiger algorithm[J]. Mining Research and Development,2016,36(7):77−81.
    [31]
    林峰,李庶林,薛云亮,等. 基于不同初值的微震源定位方法[J]. 岩石力学与工程学报,2010,29(5):996−1002.

    LIN Feng,LI Shulin,XUE Yunliang,et al. Microseismic sources location methods based on different initial values[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(5):996−1002.
    [32]
    赵勇胜,赵拥军,赵闯. 联合角度和时差的单站无源相干定位加权最小二乘算法[J]. 雷达学报,2016,5(3):302−311.

    ZHAO Yongsheng,ZHAO Yongjun,ZHAO Chuang. Weighted least squares algorithm for single–observer passive coherent location using DOA and TDOA measurements[J]. Journal of Radars,2016,5(3):302−311.
    [33]
    YU Huagang,HUANG Gaoming,GAO Jun,et al. Practical constrained least–square algorithm for moving source location using TDOA and FDOA measurements[J]. Journal of Systems Engineering and Electronics,2012,23(4):488−494. DOI: 10.1109/JSEE.2012.00062
    [34]
    李楠,王恩元,孙珍玉,等. 基于L1范数统计的单纯形微震震源定位方法[J]. 煤炭学报,2014,39(12):2431−2438.

    LI Nan,WANG Enyuan,SUN Zhenyu,et al. Simplex microseismic source location method based on L1 norm statistical standard[J]. Journal of China Coal Society,2014,39(12):2431−2438.
    [35]
    尹莘新. 基于时差法的声发射源定位方法研究[D]. 长春:吉林大学,2020.

    YIN Shenxin. Study of acoustic source localization techniques based on TDOA[D]. Changchun:Jilin University,2020.
    [36]
    尹莘新,崔志文,吕伟国. 二维板声发射源定位实验的一种简易实现方法[J]. 大学物理,2017,36(8):30−35.

    YIN Shenxin,CUI Zhiwen,LYU Weiguo. A simple experimental method of 2D acoustic source localization[J]. College Physics,2017,36(8):30−35.
    [37]
    崔志文,尹莘新. 适用于三维结构的声发射源定位方法:CN111239256A[P]. 2020-06-05.
    [38]
    GHOSE B,BALASUBRAMANIAM K,KRISHNAMURTHY C V,et al. Two–dimensional FEM simulation of ultrasonic wave propagation in isotropic solid media using COMSOL[C]//The COMSOL Conference. India,2010.

Catalog

    Article Metrics

    Article views (68) PDF downloads (18) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return