GAO Mingzhong,SONG Jie,CUI Pengfei,et al. Evolutionary pattern and a calculation method of in situ gas pressure based on pressure-retaining coal cores[J]. Coal Geology & Exploration,2025,53(4):1−11. DOI: 10.12363/issn.1001-1986.24.09.0613
Citation: GAO Mingzhong,SONG Jie,CUI Pengfei,et al. Evolutionary pattern and a calculation method of in situ gas pressure based on pressure-retaining coal cores[J]. Coal Geology & Exploration,2025,53(4):1−11. DOI: 10.12363/issn.1001-1986.24.09.0613

Evolutionary pattern and a calculation method of in situ gas pressure based on pressure-retaining coal cores

More Information
  • Received Date: October 07, 2024
  • Revised Date: March 11, 2025
  • Accepted Date: April 24, 2025
  • Objective and Methods 

    The in situ gas pressure of coal seams represents a crucial parameter for the safe production of coal mines and the assessment of coalbed methane (CBM) resources. To overcome current limitations in determining the in situ gas pressure, such as prolonged measurement cycles and the influence of multiple parameters on the measurement results, this study conducted isothermal adsorption and volumetric expansion desorption experiments on pressure-retaining coal cores with varying moisture contents using a self-constructed experimental system for gas pressure evolution in pressure-retaining coal cores. As a result, the evolutionary pattern of gas pressure in pressure-retaining coal cores was determined. Accordingly, following the theoretical calculation principle of in situ gas pressure in coal seams, formed by the in situ pressure- and gas-retaining coring process for deep coal seams, this study proposed a correction model for gas pressure calculation that considered moisture content and verified its reliability.

    Results and Conclusions 

    The results indicate that: (1) Influenced by high gas pressure, the gas pressure within the pressure-preserved space more easily reaches a new equilibrium. During the isothermal adsorption process, the gas pressure exhibits a staged evolution characteristic, where the gas pressure in the pressure-preserved coal core first rapidly decreases to a certain value, then increases before gradually stabilizing. (2) Due to the pore characteristics of the coal sample being dominated by mesopores and having a large micropore volume, in the isothermal adsorption experiments of pressure-preserved coal cores with different moisture contents, the higher the moisture content, the longer the equilibrium time and the lower the adsorption pressure drop. (3) The gas pressure of the coal samples was calculated based on the expansion desorption experiments of pressure-preserved coal cores with different moisture contents. The average relative errors of the gas pressure calculation results under various moisture contents were 2.22%, 1.29%, 0.39%, and 0.80%, respectively. The corrected gas pressure calculation method demonstrated high accuracy across all moisture contents. Ensuring reliable calculation accuracy, the use of equilibrium gas pressure within the pressure-preserved space to calculate in-situ coalbed gas pressure is expected to provide a reliable and convenient calculation method for the determination of in-situ coalbed gas pressure.

  • [1]
    谢和平,周宏伟,薛东杰,等. 我国煤与瓦斯共采:理论、技术与工程[J]. 煤炭学报,2014,39(8):1391−1397.

    XIE Heping,ZHOU Hongwei,XUE Dongjie,et al. Theory,technology and engineering of simultaneous exploitation of coal and gas in China[J]. Journal of China Coal Society,2014,39(8):1391−1397.
    [2]
    崔鹏飞,高明忠,尚德磊,等. 基于保压取心的深部煤层原位压力计算原理及方法初探[J]. 煤田地质与勘探,20,51(8):59–67.

    CUI Pengfei,GAO Mingzhong,SHANG Delei,et al. A preliminary study of pressure–preserved coring calculation principle and method for in–situ pressure in deep coal seams[J]. Coal Geology & Exploration,20,51(8):59–67.
    [3]
    张超林,王恩元,许江,等. 煤层瓦斯压力对瓦斯抽采效果的影响[J]. 采矿与安全工程学报,20,39(3):634–64.

    ZHANG Chaolin,WANG Enyuan,XU Jiang,et al. The influence of gas pressure on drainage effect in coal seam[J]. Journal of Mining & Safety Engineering,20,39(3):634–64.
    [4]
    李回贵,王军,李晓龙,等. 瓦斯压力对突出煤层煤样力学特征影响规律的研究[J]. 矿业安全与环保,2022,49(4):129−134.

    LI Huigui,WANG Jun,LI Xiaolong,et al. Study on influence law of gas pressure on mechanical characteristic of coal samples in outburst coal seam[J]. Mining Safety & Environmental Protection,2022,49(4):129−134.
    [5]
    孙东玲,曹偈,杨慧明,等. 陕西侏罗纪煤层瓦斯灾害特点及突出发生条件的探讨[J]. 矿业安全与环保,2024,51(3):1−7.

    SUN Dongling,CAO Ji,YANG Huiming,et al. Discussion on characteristics and outburst conditions of Jurassic coal seam gas disaster in Shaanxi Province[J]. Mining Safety & Environmental Protection,2024,51(3):1−7.
    [6]
    邵帆. 基于Spark的煤与瓦斯突出预警研究[D]. 西安:西安科技大学,2019.

    SHAO Fan. Research on early warning of coal and gas outburst based on Spark[D]. Xi’an:Xi’an University of Science and Technology,2019.
    [7]
    胡社荣,彭纪超,黄灿,等. 千米以上深矿井开采研究现状与进展[J]. 中国矿业,2011,20(7):105−110.

    HU Sherong,PENG Jichao,HUANG Can,et al. An overview of current status and progress in coal mining of the deep over a kilometer[J]. China Mining Magazine,2011,20(7):105−110.
    [8]
    谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283−1305.

    XIE Heping. Research review of the state key research development program of China:Deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283−1305.
    [9]
    赵嵘,齐黎明. 井下直接法测定煤层瓦斯压力研究现状及分析[J]. 煤炭技术,2017,36(3):202−20.

    ZHAO Rong,QI Liming. Research status of direct method of gas pressure measurement in coal seam under mine and its analysis[J]. Coal Technology,2017,36(3):202−20.
    [10]
    蒋云,朱天成,汪腾翔. 胶囊–聚氨酯联合封孔测压技术的研究与应用[J]. 中国安全生产科学技术,2015,11(7):80−84.

    JIANG Yun,ZHU Tiancheng,WANG Tengxiang. Research and application of pressure measurement technology by combination sealing of capsule and polyurethane[J]. Journal of Safety Science and Technology,2015,11(7):80−84.
    [11]
    王振锋,周英,孙玉宁,等. 新型瓦斯抽采钻孔注浆封孔方法及封堵机理[J]. 煤炭学报,2015,40(3):588−595.

    WANG Zhenfeng,ZHOU Ying,SUN Yuning,et al. Novel gas extraction borehole grouting sealing method and sealing mechanism[J]. Journal of China Coal Society,2015,40(3):588−595.
    [12]
    GAO Yingjun,YAO Banghua,ZHANG Hongtu,et al. Study on the test of coal mass fracture grouting sealing with coal–based materials and its application[J]. Frontiers in Earth Science,20,10:1089248.
    [13]
    杨宏民,杨峰峰,安丰华,等. 煤层瓦斯压力测定的合理封孔注浆压力研究[J]. 中国安全生产科学技术,2015,11(5):13−17.

    YANG Hongmin,YANG Fengfeng,AN Fenghua,et al. Study on reasonable grouting sealing pressure for hole sealing in the determination of coal seam gas pressure[J]. Journal of Safety Science and Technology,2015,11(5):13−17.
    [14]
    齐黎明,赵玉岐,王轶波,等. 基于封孔前瓦斯损失量的测压结果修正分析[J]. 煤炭学报,2007,32(1):60−6.

    QI Liming,ZHAO Yuqi,WANG Yibo,et al. Analysis on the gas pressure measurement result revision on the basis of gas loss quantity before bore being sealed[J]. Journal of China Coal Society,2007,32(1):60−6.
    [15]
    王法凯,蒋承林,公衍伟,等. 基于M–Ⅱ型瓦斯压力测定仪+套管法的穿多煤层测定瓦斯压力技术[J]. 工矿自动化,2011,37(3):1−4.

    WANG Fakai,JIANG Chenglin,GONG Yanwei,et al. Technology of detecting gas pressure by puncturing multi–seam based on M–Ⅱ gas pressure detector and casing method[J]. Industry and Mine Automation,2011,37(3):1−4.
    [16]
    刘垒,杨胜强,陈凯. 复杂地质条件下的煤层瓦斯压力测定[J]. 煤矿安全,201,44(1):130–1.

    LIU Lei,YANG Shengqiang,CHEN Kai. Gas pressure measurement of coal seam under complex geological conditions[J]. Safety in Coal Mines,201,44(1):130–1.
    [17]
    谢和平,崔鹏飞,尚德磊,等. 深部煤层原位保压取心技术原理与瓦斯参数测定研究进展[J]. 煤田地质与勘探,20,51(8):1–1.

    XIE Heping,CUI Pengfei,SHANG Delei,et al. Research advances on the in–situ pressure–preserved coring and gas parameter determination for deep coal seams[J]. Coal Geology & Exploration,20,51(8):1–1.
    [18]
    高明忠,陈领,凡东,等. 深部煤矿原位保压保瓦斯取芯原理与技术探索[J]. 煤炭学报,2021,46(3):885−897.

    GAO Mingzhong,CHEN Ling,FAN Dong,et al. Principle and technology of coring with in–situ pressure and gas maintaining in deep coal mine[J]. Journal of China Coal Society,2021,46(3):885−897.
    [19]
    LEVY J H,DAY S J,KILLINGLEY J S. Methane capacities of Bowen Basin coals related to coal properties[J]. Fuel,1997,76(9):813−819. DOI: 10.1016/S0016-2361(97)00078-1
    [20]
    PAN Zhejun,CONNELL L D,CAMILLERI M,et al. Effects of matrix moisture on gas diffusion and flow in coal[J]. Fuel,2010,89(11):3207−3217. DOI: 10.1016/j.fuel.2010.05.038
    [21]
    WANG Shugang,ELSWORTH D,LIU Jishan. Permeability evolution in fractured coal:The roles of fracture geometry and water–content[J]. International Journal of Coal Geology,2011,87(1):13−25. DOI: 10.1016/j.coal.2011.04.009
    [22]
    武洋,姚强岭,吴宝杨,等. 不同含水状态下煤样蠕变实验研究[J]. 矿业安全与环保,2024,51(3):72−77.

    WU Yang,YAO Qiangling,WU Baoyang,et al. Experimental study on coal samples creep in different water content states[J]. Mining Safety & Environmental Protection,2024,51(3):72−77.
    [23]
    CHEN Dong,PAN Zhejun,LIU Jishan,et al. Modeling and simulation of moisture effect on gas storage and transport in coal seams[J]. Energy & Fuels,201,26(3):1695–1706.
    [24]
    褚鹏,尚德磊,李建华,等. 原位保压取心气体组分对煤层瓦斯压力测算的影响[J]. 煤田地质与勘探,20,51(8):79–87.

    CHU Peng,SHANG Delei,LI Jianhua,et al. Influence of gas components on the determination of gas pressure in coal seams under in–situ pressure–preserved coring[J]. Coal Geology & Exploration,20,51(8):79–87.
    [25]
    赵金,张遂安. 煤层气排采储层压降传播规律研究[J]. 煤炭科学技术,201,40(10):65–68.

    ZHAO Jin,ZHANG Sui’an. Study on pressure drop transmission law of coal bed methane drainage reservoir stratum[J]. Coal Science and Technology,201,40(10):65–68.
    [26]
    李来成,傅雪海,罗斌. 大块煤样逐次降压解吸实验研究[J]. 中国煤炭地质,2015,27(9):18−21. DOI: 10.3969/j.issn.1674-1803.2015.09.05

    LI Laicheng,FU Xuehai,LUO Bin. Experimental study on large coal sample desorption under successive depressurization[J]. Coal Geology of China,2015,27(9):18−21. DOI: 10.3969/j.issn.1674-1803.2015.09.05
    [27]
    石迎爽,梁冰,孙维吉,等. 压降及储层压力与煤变形的相关性研究[J]. 西南石油大学学报(自然科学版),2017,39(6):140−146.

    SHI Yingshuang,LIANG Bing,SUN Weiji,et al. A study on the correlation between the pressure drawdown gradient and reservoir pressure and the coal deformation[J]. Journal of Southwest Petroleum University(Science & Technology Edition),2017,39(6):140−146.
    [28]
    赵泓超,赵鹏翔,许永刚,等. 倾斜厚煤层覆岩瓦斯高渗区应力场−渗流场联动演化采高效应[J]. 西安科技大学学报,2024,44(5):866−879.

    ZHAO Hongchao,ZHAO Pengxiang,XU Yonggang,et al. Mining height effect of stress field-seepage field linkage evolution in gas high permeability zone of overlying strata in inclined thick coal seam[J]. Journal of Xi’an University of Science and Technology,2024,44(5):866−879.
    [29]
    曾泉树,高清春,汪志明. 煤岩吸附高压甲烷的实验与模型研究[J]. 石油科学通报,2020,5(1):78−9.

    ZENG Quanshu,GAO Qingchun,WANG Zhiming. Experimental and modeling studies on high pressure methane adsorbed on coals[J]. Petroleum Science Bulletin,2020,5(1):78−9.
    [30]
    韩恩光,刘志伟,冉永进,等. 不同粒度煤的瓦斯解吸扩散规律实验研究[J]. 中国安全生产科学技术,2019,15(12):83−87.

    HAN Enguang,LIU Zhiwei,RAN Yongjin,et al. Experimental study on gas desorption and diffusion laws of coal with different particle sizes[J]. Journal of Safety Science and Technology,2019,15(12):83−87.
    [31]
    何满潮,谢和平,彭苏萍,等. 深部开采岩体力学研究[J]. 岩石力学与工程学报,2005,24(16):2803−281.

    HE Manchao,XIE Heping,PENG Suping,et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803−281.
  • Cited by

    Periodical cited type(17)

    1. 王淑璇,王强民,曹煜,王浩. 榆横矿区典型矿井含水层水力联系辨识. 能源与环保. 2025(02): 101-105+111 .
    2. 马国逢,刘洋,杨建,王强民. 蒙陕深埋煤层首采工作面顶板富水性和涌水量差异研究. 煤炭工程. 2024(02): 87-91 .
    3. 丁莹莹,尹尚先,连会青,卜昌森,刘伟,夏向学,周旺. 基于CEEMDAN和改进的混合时间序列模型工作面涌水量预测研究. 中国安全生产科学技术. 2024(03): 110-117 .
    4. 任海帆. 鄂尔多斯盆地煤层气开发井壁稳定性技术研究. 中国高新科技. 2024(07): 123-125 .
    5. 邓启锐,高建峰,刘飞,徐士哲,许珂,王杰,南忠辉. 基于不完整井非稳定运动的立井井筒涌水量预测研究. 煤炭工程. 2024(08): 172-176 .
    6. 付德渊,樊江伟,乌阳嘎,黄海鱼,白志君,李哲. 基于AHP的东胜煤田煤层顶板充水强度分区评价. 陕西煤炭. 2024(09): 58-63+99 .
    7. 周振方,董书宁,董阳,罗生虎,薛建坤,王治宙,王淑璇,尚宏波,王甜甜,王昱同,王同. 蒙陕接壤区典型煤层开采顶板周期性变形破坏及涌水响应特征. 煤田地质与勘探. 2024(08): 101-110 . 本站查看
    8. 贾继平,李赵岩,李涛,田超超. 黄陵一号煤矿814工作面采前防治水安全评价. 陕西煤炭. 2024(10): 91-95 .
    9. 陈云民,李媛,苏士杰,吴永辉,周新河. 基于小波变换的煤矿区地下水位动态变化特征分析. 煤炭工程. 2024(S1): 153-162 .
    10. 杨建,王皓,王强民,张溪彧,王甜甜. 蒙陕接壤区矿井水中典型污染组分特征及来源. 煤炭学报. 2023(04): 1687-1696 .
    11. 王林威,靖娟,尚文绣. 矿井大量涌水地区多水源联合配置. 水资源与水工程学报. 2023(03): 37-45+54 .
    12. 刘慧,刘桂芹,宁殿艳,樊娟,陈卫明. 基于VMD-DBN的矿井涌水量预测方法. 煤田地质与勘探. 2023(06): 13-21 . 本站查看
    13. 孙刚友,胡清珍,康钦容,夏缘帝,袁威,张卫中. 基于大井法和地下水模型系统数值模拟方法的某矿坑涌水量预测对比分析. 科学技术与工程. 2023(21): 9024-9031 .
    14. 王皓,周振方,杨建,赵春虎,曹煜,冯龙飞,尚宏波,王甜甜,王昱同,薛建坤. 蒙陕接壤区典型煤层开采地下水系统扰动的定量表征. 煤炭科学技术. 2023(07): 83-93 .
    15. 康占忠,刘洋. 榆神矿区水文地球化学特征精细分层研究. 煤炭技术. 2022(08): 72-75 .
    16. 刘洋,杨建,周建军. 蒙陕深埋矿区工作面涌水量全生命周期演化规律. 煤田地质与勘探. 2022(12): 152-158 . 本站查看
    17. 周新河,翁明月,苏士杰,李广疆. 近距离煤层顶板水害立体防控技术研究——以蒙陕深部矿井为例. 煤炭科学技术. 2021(12): 165-172 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (8) PDF downloads (0) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return