PENG Xiyi,WANG Yanyong,LI Song,et al. Migration characteristics and storage forms of liquid and supercritical CO2 in saline aquifers[J]. Coal Geology & Exploration,2025,53(2):99−106. DOI: 10.12363/issn.1001-1986.24.09.0579
Citation: PENG Xiyi,WANG Yanyong,LI Song,et al. Migration characteristics and storage forms of liquid and supercritical CO2 in saline aquifers[J]. Coal Geology & Exploration,2025,53(2):99−106. DOI: 10.12363/issn.1001-1986.24.09.0579

Migration characteristics and storage forms of liquid and supercritical CO2 in saline aquifers

More Information
  • Received Date: October 15, 2024
  • Revised Date: January 07, 2025
  • Accepted Date: February 24, 2025
  • Objective 

    CO2 storage in saline aquifers serves as a critical technology used to dramatically reduce greenhouse gas emissions. Owing to the low-temperature marine environment and the pressure from overlying seawater, shallow offshore saline aquifers exhibit significantly different temperature and pressure conditions compared to onshore saline aquifers at equivalent burial depths, allowing CO2 to occur in a liquid state. Compared to supercritical CO2, liquid CO2 features higher density, viscosity, and solubility in formation water, which affect the CO2 migration and storage processes. Previous studies focus primarily on supercritical CO2, lacking a deep understanding of the migration and storage patterns of liquid CO2 in saline aquifers.

    Methods 

    Considering the distinct characteristics of liquid and supercritical CO2, this study constructed a mathematical model for CO2 migration and storage under the action of buoyancy and capillary pressure. Using the high-precision numerical simulations of two-phase seepage, this study compared the laws of changes in the migration characteristics and storage forms of liquid and supercritical CO2 in saline aquifers after gas injection. [Results and Conclusions] The results indicate that compared to supercritical CO2, liquid CO2 manifested reduced vertical migration rates and swept volumes under buoyancy-dominated conditions. After 25 a, the storage amounts of liquid CO2 in different storage forms were significantly lower than those of supercritical CO2, making it more difficult to fully leverage the storage capacity of saline aquifers. Among the different CO2 storage forms, local capillary trapping, residual gas trapping, and solubility trapping represent 55%, 40%, and 5%, respectively, with the CO2 phase states posing minor impacts on the storage forms. An increase in geothermal gradient enhanced the vertical migration and swept volume of liquid CO2, the CO2 storage amounts of different storage forms, and the utilization efficiency of the storage capacity of saline aquifers. At the same burial depths, supercritical CO2 displayed significantly different migration characteristics and storage amounts in onshore and offshore saline aquifers. The inhibited vertical migration of supercritical CO2 in offshore saline aquifers reduced the CO2 storage amounts of local capillary trapping and residual gas trapping, hampering the effective utilization of the storage capacity of saline aquifers. The results of this study can serve as a guide for efficient CO2 storage in onshore and offshore saline aquifers.

  • [1]
    李阳,王锐,赵清民,等. 含油气盆地咸水层二氧化碳封存潜力评价方法[J]. 石油勘探与开发,2023,50(2):424−430. DOI: 10.11698/PED.20220851

    LI Yang,WANG Rui,ZHAO Qingmin,et al. A CO2 storage potential evaluation method for saline aquifers in a petroliferous basin[J]. Petroleum Exploration and Development,2023,50(2):424−430. DOI: 10.11698/PED.20220851
    [2]
    蒋恕,张凯,杜凤双,等. 二氧化碳地质封存及提高油气和地热采收率技术进展与展望[J]. 地球科学,2023,48(7):2733−2749.

    JIANG Shu,ZHANG Kai,DU Fengshuang,et al. Progress and prospects of CO2 storage and enhanced oil,gas and geothermal recovery[J]. Earth Science,2023,48(7):2733−2749.
    [3]
    张贤,杨晓亮,鲁玺,等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 北京:中国21世纪议程管理中心,全球碳捕集与封存研究院,清华大学,2023.
    [4]
    刘世奇,皇凡生,杜瑞斌,等. CO2地质封存与利用示范工程进展及典型案例分析[J]. 煤田地质与勘探,2023,51(2):158−174. DOI: 10.12363/issn.1001-1986.22.12.0998

    LIU Shiqi,HUANG Fansheng,DU Ruibin,et al. Progress and typical case analysis of demonstration projects of the geological sequestration and utilization of CO2[J]. Coal Geology & Exploration,2023,51(2):158−174. DOI: 10.12363/issn.1001-1986.22.12.0998
    [5]
    周守为,李清平,朱军龙,等. CO2海洋封存的思考与新路径探索[J]. 天然气工业,2024,44(4):1−10. DOI: 10.3787/j.issn.1000-0976.2024.04.001

    ZHOU Shouwei,LI Qingping,ZHU Junlong,et al. Consideration on CO2 marine storage and exploration of new paths[J]. Natural Gas Industry,2024,44(4):1−10. DOI: 10.3787/j.issn.1000-0976.2024.04.001
    [6]
    于航,刘强,李彦尊,等. 大规模海上CCS/CCUS集群项目研究与思考[J]. 石油科技论坛,2023,42(2):90−95. DOI: 10.3969/j.issn.1002-302x.2023.02.011

    YU Hang,LIU Qiang,LI Yanzun,et al. Research and thinking of large–scale offshore CCS/CCUS cluster projects[J]. Petroleum Science and Technology Forum,2023,42(2):90−95. DOI: 10.3969/j.issn.1002-302x.2023.02.011
    [7]
    SAADATPOOR E,BRYANT S L,SEPEHRNOORI K. New trapping mechanism in carbon sequestration[J]. Transport in Porous Media,2010,82:3−17. DOI: 10.1007/s11242-009-9446-6
    [8]
    王延永,彭玺伊,王晓光,等. 浮力与毛管力协同作用下层状咸水层中CO2运移机制[J]. 中国石油大学学报(自然科学版),2023,47(3):96−106.

    WANG Yanyong,PENG Xiyi,WANG Xiaoguang,et al. Mechanism of buoyancy and capillary forces dominated CO2 migration in layered saline aquifers[J]. Journal of China University of Petroleum (Edition of Natural Science),2023,47(3):96−106.
    [9]
    崔国栋,胡哲,宁伏龙,等. 咸水层毛管力圈闭机制及对非纯CO2封存效率的影响[J]. 煤炭学报,2023,48(7):2791−2801.

    CUI Guodong,HU Zhe,NING Fulong,et al. Local capillary entrapment and its effect on sequestration efficiencies during impure CO2 injection into saline aquifers[J]. Journal of China Coal Society,2023,48(7):2791−2801.
    [10]
    REN Bo. Local capillary trapping in carbon sequestration:Parametric study and implications for leakage assessment[J]. International Journal of Greenhouse Gas Control,2018,78:135−147. DOI: 10.1016/j.ijggc.2018.08.001
    [11]
    CUI Guodong,HU Zhe,WANG Yanyong,et al. Migration characteristics and local capillary trapping mechanism after the CO2 leakage out of saline aquifers[J]. Fuel,2024,356:129347. DOI: 10.1016/j.fuel.2023.129347
    [12]
    IDE S T,JESSEN K,ORR JR F M. Storage of CO2 in saline aquifers:Effects of gravity,viscous,and capillary forces on amount and timing of trapping[J]. International Journal of Greenhouse Gas Control,2007,1(4):481−491. DOI: 10.1016/S1750-5836(07)00091-6
    [13]
    BRYANT S L,LAKSHMINARASIMHAN S,POPE G A. Buoyancy–dominated multiphase flow and its effect on geological sequestration of CO2[J]. SPE Journal,2008,13(4):447−454. DOI: 10.2118/99938-PA
    [14]
    WEN Gege,BENSON S M. CO2 plume migration and dissolution in layered reservoirs[J]. International Journal of Greenhouse Gas Control,2019,87:66−79. DOI: 10.1016/j.ijggc.2019.05.012
    [15]
    KHUDAIDA K J,DAS D B. A numerical analysis of the effects of supercritical CO2 injection on CO2 storage capacities of geological formations[J]. Clean Technologies,2020,2(3):333−364. DOI: 10.3390/cleantechnol2030021
    [16]
    VILARRASA V,SILVA O,CARRERA J,et al. Liquid CO2 injection for geological storage in deep saline aquifers[J]. International Journal of Greenhouse Gas Control,2013,14:84−96. DOI: 10.1016/j.ijggc.2013.01.015
    [17]
    LAND C S. Calculation of imbibition relative permeability for two– and three–phase flow from rock properties[J]. SPE Journal,1968,8(2):149−156.
    [18]
    SOAVE G. Equilibrium constants from a modified Redlich–Kwong equation of state[J]. Chemical Engineering Science,1972,27(6):1197−1203. DOI: 10.1016/0009-2509(72)80096-4
    [19]
    PENG Dingyu,ROBINSON D B. A new two–constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals,1976,15(1):59−64.
    [20]
    SHI Jialin,LI Huazhou. An improved volume translation model for PC–SAFT EOS based on a distance function[J]. Chemical Engineering Science,2023,276:118800. DOI: 10.1016/j.ces.2023.118800
    [21]
    SHI Jialin,WU Changxu,LIU Honglai,et al. Application of volume–translated rescaled perturbed–chain statistical associating fluid theory equation of state to pure compounds using an expansive experimental database[J]. AIChE Journal,2024,70(8):e18466. DOI: 10.1002/aic.18466
    [22]
    KUMAR A,OZAH R,NOH M,et al. Reservoir simulation of CO2 storage in deep saline aquifers[J]. SPE Journal,2005,10(3):336−348. DOI: 10.2118/89343-PA
    [23]
    PEDERSEN K S,FREDENSLUND A,CHRISTENSEN P L,et al. Viscosity of crude oils[J]. Chemical Engineering Science,1984,39(6):1011−1016. DOI: 10.1016/0009-2509(84)87009-8
    [24]
    DEUTSCH C V,JOURNEL A G. GSLIB:Geostatistical software library and user’s guide (Second edition)[M]. Oxford:Oxford University Press,1997.
    [25]
    WANG Yanyong,WANG Xiaoguang,DONG Rencheng,et al. Reservoir heterogeneity controls of CO2–EOR and storage potentials in residual oil zones:Insights from numerical simulations[J]. Petroleum Science,2023,20(5):2879−2891. DOI: 10.1016/j.petsci.2023.03.023
    [26]
    HOLTZ M H. Residual gas saturation to aquifer influx:A calculation method for 3–D computer reservoir model construction[R]. Calgary:SPE Gas Technology Symposium,2002.
    [27]
    REN Bo,SUN Yuhao,BRYANT S. Maximizing local capillary trapping during CO2 injection[J]. Energy Procedia,2014,63:5562−5576. DOI: 10.1016/j.egypro.2014.11.590

Catalog

    Article Metrics

    Article views (42) PDF downloads (6) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return