Citation: | DONG Mintao. Geological-engineering integrated reconnaissance survey technology for skylights as a hidden disaster-causing factor[J]. Coal Geology & Exploration,2025,53(2):22−32. DOI: 10.12363/issn.1001-1986.24.05.0339 |
Skylights represent a primary hidden disaster factor in mines in the southern Yushen mining area within the Shanbei Jurassic coalfield, Shaanxi Province. Since they are hidden and difficult to detect, their distribution in the mining area remains unclear, posing pronounced safety hazards. This necessitates developing effective technical means to overcome challenges in the spatial exploration of skylights and ensure mine safety.
Focusing on a typical mine in the Yushen mining area as an example, this study explored the spatial distribution characteristics and types of skylights in the study area using the geological-engineering integrated reconnaissance survey technology that combines geological analysis, scientific assessment, and engineering exploration.
The results indicate that the formation and evolution of skylights in the study area are primarily governed by the paleochannels, while also exhibiting some inheritance from modern rivers. The high-density direct current electric method and micromotion exploration yielded distinct resistivity and acoustic signals of skylights in the study area, exhibiting significantly high resistivity and anomalous wave velocities. In contrast, the transient electromagnetic method yielded insignificant responses of physical properties. The developmental areas of skylights consist of lithologic assemblages formed by paleochannel sediments, exhibiting a distinct dual structure and lithologic assemblage characteristics of secondarily deposited laterites mixed or interbedded with sandy soil layers in channels. The developmental areas of laterites are characterized by borehole shrinkage, small fluid leakage in boreholes, and upright rock layers with distinct stratification. In the developmental areas of skylights, loess and laterites exhibit permeability coefficients of 2.21×10−2 m/d and 7.18×10−3 m/d, respectively, suggesting that laterites have a higher capacity to block water flow than loess. Comprehensive geophysical prospecting allows for the quick identification of anomalous laterite areas on a horizontal plane, providing a basis for accurately delineating skylights using detailed exploration engineering. Concurrently, the detailed exploration results can verify the accuracy of the resistivity and acoustic signal characteristics of skylights derived using comprehensive geophysical prospecting. The results of this study can provide technical support for the reconnaissance survey and treatment of the skylights formed by the lacuna of laterites in the study area and serve as a guide of technical means for the effective exploration of skylights in mining areas with geological conditions similar to those in the study area, thus offering geological guarantee technology for safe, efficient, green, and intelligent coal mining.
[1] |
时文华,孔繁良,柳顺彬,等. 综合物探技术在库拜煤田某煤矿隐蔽致灾因素普查中的应用[J]. 新疆地质,2023,41(1):109−112. DOI: 10.3969/j.issn.1000-8845.2023.01.021
SHI Wenhua,KONG Fanliang,LIU Shunbin,et al. Application of integrated geophysical techniques in survey of hidden disaster factors of a colliery of Kuqa—Baicheng coal field[J]. Xinjiang Geology,2023,41(1):109−112. DOI: 10.3969/j.issn.1000-8845.2023.01.021
|
[2] |
吴敏杰. 神北炭灰沟煤矿隐蔽致灾因素探查及分析[J]. 煤矿安全,2023,54(5):252−256.
WU Minjie. Exploration and analysis of hidden disaster factors in north Shenmu Tanhuigou Coal Mine[J]. Safety in Coal Mines,2023,54(5):252−256.
|
[3] |
吴艳,刘旭东,王海军,等. 急倾斜煤层隐蔽致灾因素探查及防治技术[J]. 中国煤炭,2022,48(增刊2):17−27.
WU Yan,LIU Xudong,WANG Haijun,et al. Exploration and prevention technology of hidden disaster–causing factors in steeply inclined coal seam[J]. China Coal,2022,48(Sup.2):17−27.
|
[4] |
白银,高建军. 采动影响下地下水流动规律[J]. 辽宁工程技术大学学报(自然科学版),2011,30(增刊1):22−25.
BAI Yin,GAO Jianjun. Groundwater flowing law affected by mining[J]. Journal of Liaoning Technical University(Natural Science),2011,30(Sup.1):22−25.
|
[5] |
罗忠琴,刘鹏,唐建益,等. 煤矿隐蔽致灾因素地震勘探现状与发展方向[J]. 中国煤炭,2023,49(1):16−29. DOI: 10.3969/j.issn.1006-530X.2023.01.003
LUO Zhongqin,LIU Peng,TANG Jianyi,et al. Present situation and development direction of seismic exploration technology for hidden disaster-causing factors in coal mine[J]. China Coal,2023,49(1):16−29 DOI: 10.3969/j.issn.1006-530X.2023.01.003
|
[6] |
任庆超,赵丹. 黑龙江省东荣二矿新近系“天窗”的探测研究[J]. 中国煤炭地质,2015,27(12):44−47. DOI: 10.3969/j.issn.1674-1803.2015.12.11
REN Qingchao,ZHAO Dan. Surveying research on neogene “opening” in Dongrong No.2 coalmine,Heilongjiang Province[J]. Coal Geology of China,2015,27(12):44−47. DOI: 10.3969/j.issn.1674-1803.2015.12.11
|
[7] |
曾一凡,朱慧聪,武强,等. 我国不同类别煤层顶板水害致灾机理与防控路径[J]. 煤炭学报,2024,49(3):1539−1555.
ZENG Yifan,ZHU Huicong,WU Qiang,et al. Disaster–causing mechanism and prevention and control path of different types of coal seam roof water disasters in China[J]. Journal of China Coal Society,2024,49(3):1539−1555.
|
[8] |
段建华,查文相,郝卫华. 综合物探技术在探测新生界“天窗”中的应用[J]. 中国煤田地质,2007,19(增刊2):114−116.
DUAN Jianhua,ZHA Wenxiang,HAO Weihua. Application of integrated geophysical prospecting in Cenozoic “scuttle” detection[J]. Coal Geology of China,2007,19(Sup.2):114−116.
|
[9] |
段建华. 综合物探技术在矿井防治水中的应用[J]. 华北科技学院学报,2009,6(4):60−65. DOI: 10.3969/j.issn.1672-7169.2009.04.013
DUAN Jianhua. The application of integrated geophysical exploration techniques in prevention and treatment of mine water[J]. Journal of North China Institute of Science and Technology,2009,6(4):60−65. DOI: 10.3969/j.issn.1672-7169.2009.04.013
|
[10] |
郭凯,朱学臣,高建,等. 综合物探方法在东荣二矿井“天窗”探测中的应用[J]. 中国煤炭地质,2015,27(12):76−78. DOI: 10.3969/j.issn.1674-1803.2015.12.19
GUO Kai,ZHU Xuechen,GAO Jian,et al. Application of integrated geophysical prospecting in Dongrong No.2 Coalmine “opening” surveying[J]. Coal Geology of China,2015,27(12):76−78. DOI: 10.3969/j.issn.1674-1803.2015.12.19
|
[11] |
张冀. 利用物探和钻探手段探查“天窗”分布[J]. 中国煤炭地质,2022,34(增刊1):179−183.
ZHANG Ji. Exploration of “opening” distribution by geophysical and drilling methods[J]. Coal Geology of China,2022,34(Sup.1):179−183.
|
[12] |
陈渭南. 陕北沙黄土区现代侵蚀过程及其成因[J]. 陕西师范大学学报(自然科学版),1989,17(2):60−66.
CHEN Weinan. The ground surface material features and the erosional interaction of wind and water in the sandy loess terrain in north Shaanxi Province[J]. Journal of Shaanxi Normal University (Natural Science Edition),1989,17(2):60−66.
|
[13] |
李瑾,李明培. 陕北凉水井煤矿古河道分布及其对矿井涌水量的影响[J]. 中国煤炭地质,2020,32 (5):45−48.
LI Jin,LI Mingpei. Paleochannels distribution and impact on mine water inflow in Liangshuijing coalmine,northern Shaanxi[J]. Coal Geology of China,32(5),45−48.
|
[14] |
丁仲礼,孙继敏,朱日祥,等. 黄土高原红粘土成因及上新世北方干旱化问题[J]. 第四纪研究,1997,11(2):147−157.
DING Zhongli,SUN Jimin,ZHU Rixiang,et al. Eolian origin of the red clay deposits in the loess plateau and implications for Pliocene climatic changes[J]. Quaternary Sciences,1997,11(2):147−157.
|
[15] |
李涛,李文平,常金源,等. 陕北浅埋煤层开采隔水土层渗透性变化特征[J]. 采矿与安全工程学报,2011,28(1):127−131.
LI Tao,LI Wenping,CHANG Jinyuan,et al. Permeability features of water–resistant clay layer in northern Shaanxi Province while shallowly buried coal mining[J]. Journal of Mining & Safety Engineering,2011,28(1):127−131.
|
[16] |
王启庆,李文平,裴亚兵,等. 釆动破裂N2 红土渗透性试验研究[J]. 西南交通大学学报,2019,54(1):91−96.
WANG Qiqing,LI Wenping,PEI Yabing,et al. Experimental study on permeability of mining–cracked N2 laterite[J]. Journal of Southwest Jiaotong University,2019,54(1):91−96.
|
[17] |
李文平,叶贵钧,张莱,等. 陕北榆神府矿区保水采煤工程地质条件研究[J]. 煤炭学报,2000,25(5):449−454.
LI Wenping,YE Guijun,ZHANG Lai,et al. Study on the engineering geological conditions of protected water resources during coal mining action in Yu–Shen–Fu mine area in the north Shaanxi Province[J]. Journal of China Coal Society,2000,25(5):449−454.
|
[18] |
李文平,王启庆,李小琴. 隔水层再造:西北保水采煤关键隔水层N2红土工程地质研究[J]. 煤炭学报,2017,42(1):88−97.
LI Wenping,WANG Qiqing,LI Xiaoqin. Reconstruction of aquifuge:The engineering geological study of N2 laterite located in key aquifuge concerning coal mining with water protection in northwest China[J]. Journal of China Coal Society,2017,42(1):88−97.
|
[19] |
曾一凡,包函,武强,等. 新近系保德组沉积薄弱区红土阻水性能及其资源开发意义[J]. 煤田地质与勘探,2023,51(10):62−71.
ZENG Yifan,BAO Han,WU Qiang,et al. Water–blocking performance of laterite in weak deposition areas of Neogene Baode Formation and its significance of resource exploitation[J]. Coal Geology & Exploration,2023,51(10):62−71.
|
[20] |
许峰,靳德武,杨茂林,等. 神府–东胜矿区高强度开采顶板涌水特征及防治技术[J]. 煤田地质与勘探,2022,50(2):72−80. DOI: 10.12363/issn.1001-1986.21.07.0379
XU Feng,JIN Dewu,YANG Maolin,et al. Characteristics of roof water inflow and control technology for high intensity mining in Dongsheng Mining Area,Shenfu Coalfield[J]. Coal Geology & Exploration,2022,50(2):72−80. DOI: 10.12363/issn.1001-1986.21.07.0379
|
[21] |
孙文斌,李长江,王宇,等. 基于瞬变电磁法的煤矿隐蔽致灾水害分析研究[J]. 煤炭技术,2023,42(10):167−169.
SUN Wenbin,LI Changjiang,WANG Yu,et al. Analysis and research of hidden disaster water damage in coal mine based on transient electromagnetic method[J]. Coal Technology,2023,42(10):167−169.
|
[22] |
靳德武,刘基,许峰,等. 榆神矿区浅埋煤层减水开采中预疏放标准确定方法[J]. 煤炭学报,2021,46(1):220−229.
JIN Dewu,LIU Ji,XU Feng,et al. Method of determining of pre–drainage standard in water–decrease mining of shallow seam in Yushen mining area[J]. Journal of China Coal Society,2021,46(1):220−229.
|
[23] |
董书宁,樊敏,郭小铭,等. 陕西省煤矿典型水灾隐患特征及治理技术[J]. 煤炭学报,2024,49(2):902−916.
DONG Shuning,FAN Min,GUO Xiaoming,et al. Characteristics and prevention and control techniques of typical water hazards in coal mines in Shaanxi Province[J]. Journal of China Coal Society,2024,49(2):902−916.
|
[24] |
曾一凡,孟世豪,武强,等. 天窗补给型衍生式矿井动力突水模式及其评价与治理技术[J]. 煤炭学报,2023,48(10):3776−3788.
ZENG Yifan,MENG Shihao,WU Qiang,et al. Derivative mine dynamic water inrush mode of skylight leakage and its evaluation and control technology system[J]. Journal of China Coal Society,2023,48(10):3776−3788.
|
[25] |
赵春虎,王皓,靳德武. 煤层开采覆岩预裂–注浆改性失水控制方法探讨[J]. 煤田地质与勘探,2021,49(2):159−167. DOI: 10.3969/j.issn.1001-1986.2021.02.020
ZHAO Chunhu,WANG Hao,JIN Dewu. Discussion on roof water loss control method of coal seam based on pre–splitting grouting reformation(P–G)[J]. Coal Geology & Exploration,2021,49(2):159−167. DOI: 10.3969/j.issn.1001-1986.2021.02.020
|
[26] |
缪协兴,浦海,白海波. 隔水关键层原理及其在保水采煤中的应用研究[J]. 中国矿业大学学报,2008,37(1):1−4. DOI: 10.3321/j.issn:1000-1964.2008.01.001
MIAO Xiexing,PU Hai,BAI Haibo. Principle of water–resisting key strata and its application in water–preserved mining[J]. Journal of China University of Mining & Technology,2008,37(1):1−4. DOI: 10.3321/j.issn:1000-1964.2008.01.001
|
[27] |
刘小雄,王海军. 薄煤层智能开采工作面煤层透明化地质勘查技术[J]. 煤炭科学技术,2022,50(7):67−74.
LIU Xiaoxiong,WANG Haijun. Transparent geological exploration technology of coal seam on the working surface of intelligent mining of thin coal seam[J]. Coal Science and Technology,2022,50(7):67−74.
|
[28] |
王海军,刘善德,马良,等. 面向智能化开采的矿井煤岩层综合对比技术[J]. 煤田地质与勘探,2022,50(2):24−38. DOI: 10.12363/issn.1001-1986.21.04.0238
WANG Haijun,LIU Shande,MA Liang,et al. Comprehensive correlation technology of coal and rock layers in mines for intelligent mining[J]. Coal Geology & Exploration,2022,50(2):24−38. DOI: 10.12363/issn.1001-1986.21.04.0238
|
[29] |
王嘉伟,王海军,吴汉宁,等. 基于三维地质建模技术的煤矿隐蔽致灾因素透明化研究[J]. 工矿自动化,2024,50(3):71−81.
WANG Jiawei,WANG Haijun,WU Hanning,et al. Research on transparency of hidden disaster causing factors in coal mines based on 3D geological modeling technology[J]. Journal of Mine Automation,2024,50(3):71−81.
|
[30] |
李智学,李明培,申小龙,等. 榆神矿区基岩顶面土层缺失机理分析及其防治水意义[J]. 煤田地质与勘探,2018,46(6):102−107. DOI: 10.3969/j.issn.1001-1986.2018.06.014
LI Zhixue,LI Mingpei,SHEN Xiaolong,et al. Genetic analysis of the bedrock top surface soil layer deletion and its significance for water prevention in Yushen mining area[J]. Coal Geology & Exploration,2018,46(6):102−107. DOI: 10.3969/j.issn.1001-1986.2018.06.014
|
[31] |
姬凡,刘泽杨,邓嘉瑞. 杭来湾煤矿覆岩导水通道采后注浆封堵技术研究[J]. 当代化工研究,2024,17:107−109.
JI Fan,LIU Zeyang,DENG Jiarui. Investigating the post–extraction grouting sealant technology for water–conducting channels in the overburden of the Hanglaiwan Coal Mine[J]. Modern Chemical Research,2024,17:107−109.
|