YAO Ningping,WEI Hongchao,ZHANG Jinbao,et al. Intelligent optimization method for tunnel rotary drilling based on drill string status estimation[J]. Coal Geology & Exploration,2023,51(11):141−148. DOI: 10.12363/issn.1001-1986.23.06.0329
Citation: YAO Ningping,WEI Hongchao,ZHANG Jinbao,et al. Intelligent optimization method for tunnel rotary drilling based on drill string status estimation[J]. Coal Geology & Exploration,2023,51(11):141−148. DOI: 10.12363/issn.1001-1986.23.06.0329

Intelligent optimization method for tunnel rotary drilling based on drill string status estimation

More Information
  • Received Date: June 09, 2023
  • Revised Date: September 16, 2023
  • To address the issue in existing research where it is difficult to obtain bottom-hole drilling parameters while drilling, and to overcome the problem of low accuracy and insufficient improvement when optimizing rotary drilling operational parameters using only borehole data, an intelligent optimization method for near-horizontal tunnel rotary drilling based on drill string status is proposed. This involves constructing an in-hole state observer to estimate bottom-hole drilling parameter information. Firstly, the characteristics of rotary drilling in underground coal mine tunnels are analyzed, considering the constraints of actual drilling, and an optimization target evaluation method for mechanical drilling speed and drill bit wear is proposed. Subsequently, a concentrated mass drill string dynamics model in axial and torsional dimensions is established, and a drill string state space equation based on this model is constructed, yielding a mapping relationship between the borehole and bottom-hole drill string motion states. Based on this, a state observer is designed, using Lyapunov stability analysis method to obtain the feedback gain matrix L, to estimate the motion state of the bottom-hole drill bit, and conduct simulation analysis and evaluation. Finally, by combining data collected from the borehole and estimated bottom-hole state, the optimization of the power head speed and feed pressure was achieved using the NSGA-II multi-objective optimization algorithm, and verified with actual drilling data from a coal mine in Huainan, Anhui. The results show that the drilling speed and driller operation improved by 32.47% after optimization based on drill string state estimation of bottom-hole information, compared to an estimated 15.04% improvement using only borehole measured data. Thus, the intelligent optimization method for tunnel rotary drilling based on drill string state estimation has more advantages, and the estimated bottom-hole drilling information plays a key role in improving the level of drilling. This research has significant theoretical and practical significance for achieving efficient and intelligent drilling in coal mine tunnel rotary drilling.

  • [1]
    王凯,王荣鹏,刘宇,等. 基于Pareto最优原理的钻机钻进参数多目标优化[J]. 中国机械工程,2017,28(13):1580−1587.

    WANG Kai,WANG Rongpeng,LIU Yu,et al. Multi–objective optimization of drilling parameters based on Pareto optimality[J]. China Mechanical Engineering,2017,28(13):1580−1587.
    [2]
    杨佳淼. 随钻测量的钻进多参数多目标优化研究[D]. 西安: 西安石油大学, 2016.

    YANG Jiamiao. Research on multi–objective optimization of drilling multi–parameter of measurement while drilling[D]. Xi’an: Xi’an Shiyou University, 2016.
    [3]
    ZHOU Yang,CHEN Xin,WU Min,et al. A novel modeling and drilling optimization method with suitable constraints in geological well[J]. Control Engineering Practice,2022,122:105062. DOI: 10.1016/j.conengprac.2021.105062
    [4]
    ETESAMI D,ZHANG W J,HADIAN M. A formation–based approach for modeling of rate of penetration for an offshore gas field using artificial neural networks[J]. Journal of Natural Gas Science and Engineering,2021,95:104104. DOI: 10.1016/j.jngse.2021.104104
    [5]
    李琳,张栋栋,沙林秀,等. 基于粒子群算法的钻进参数多目标优化[J]. 现代电子技术,2014,37(10):24−27.

    LI Lin,ZHANG Dongdong,SHA Linxiu,et al. PSO–based multi–objective optimization of drilling parameters[J]. Modern Electronics Technique,2014,37(10):24−27.
    [6]
    刘光星,李巧花. 基于改进蚁群算法的钻进参数优化[J]. 西安石油大学学报 (自然科学版),2019,34(4):31−36.

    LIU Guangxing,LI Qiaohua. Optimization of drilling parameters based on improved ant colony algorithm[J]. Journal of Xi’an Shiyou University (Natural Science Edition),2019,34(4):31−36.
    [7]
    李琳,聂臻,沙林秀. 基于NSGA2的钻进参数多目标优化[J]. 石油机械,2013,41(3):55−57.

    LI Lin,NIE Zhen,SHA Linxiu. NSGA2–based multi–objective optimization of drilling parameters[J]. China Petroleum Machinery,2013,41(3):55−57.
    [8]
    李泉新. 矿用泥浆脉冲无线随钻测量装置研发及应用[J]. 煤田地质与勘探,2018,46(6):193−197.

    LI Quanxin. Development and application of mine mud pulse wireless MWD device[J]. Coal Geology & Exploration,2018,46(6):193−197.
    [9]
    RITTO T G,ESCALANTE M R,SAMPAIO R,et al. Drill–string horizontal dynamics with uncertainty on the frictional force[J]. Journal of Sound and Vibration,2013,332(1):145−153. DOI: 10.1016/j.jsv.2012.08.007
    [10]
    XIE Dou,HUANG Zhiqiang,MA Yachao,et al. Nonlinear dynamics of lump mass model of drill–string in horizontal well[J]. International Journal of Mechanical Sciences,2020,174:105450. DOI: 10.1016/j.ijmecsci.2020.105450
    [11]
    WANG Xueying,NI Hongjian,SHOR R,et al. A model–based optimization and control method of slide drilling operations[J]. Journal of Petroleum Science and Engineering,2021,198:108203. DOI: 10.1016/j.petrol.2020.108203
    [12]
    马志刚,王建华. 煤矿坑道回转系统的运行与维护[J]. 煤炭技术,2019,38(6):1−4.

    MA Zhigang,WANG Jianhua. Operation and maintenance of pit rotary system in coal mines[J]. Coal Technology,2019,38(6):1−4.
    [13]
    LU Chengda,WU Min,CHEN Luefeng,et al. An event–triggered approach to torsional vibration control of drill–string system using measurement–while–drilling data[J]. Control Engineering Practice,2021,106:104668. DOI: 10.1016/j.conengprac.2020.104668
    [14]
    YOUNG F S. Computerized drilling control[J]. Journal of Petroleum Technology,2013,21(4):483−496.
    [15]
    FLORENCE F, IVERSEN F. Real–time models for drilling process automation: Equations and applications[C]//IADC/SPE Drilling Conference and Exhibition. New Orleans, 2010.
    [16]
    张栋栋. 基于粒子群算法的钻进参数多目标优化研究[D]. 西安: 西安石油大学, 2014.

    ZHANG Dongdong. Research on multi–objective optimization of drilling parameters based on multi–objective particle swarm optimization[D]. Xi’an: Xi’an Shiyou University, 2014.
    [17]
    ZANG Chuanzhen,LU Zongyu,YE Shanlin,et al. Drilling parameters optimization for horizontal wells based on a multiobjective genetic algorithm to improve the rate of penetration and reduce drill string drag[J]. Applied Sciences,2022,12(22):11704. DOI: 10.3390/app122211704
  • Cited by

    Periodical cited type(11)

    1. 张海涛,许光泉,陈晓晴,李旭,翟晓荣,李洋,李子璇. 我国闭坑煤矿矿井水水质演化研究进展与展望. 煤炭学报. 2024(09): 3944-3959 .
    2. 张雪丽,荀守奎. 闭坑矿井老空水位回升规律研究. 煤. 2023(04): 14-17 .
    3. 耿恒毅,翟晓荣. 基于Visual Modflow的刘东煤矿闭坑水位回升预测. 绿色科技. 2023(10): 121-125 .
    4. 郝红俊,翟晓荣,胡儒,庞瑶,黄楷,吴基文. 闭坑矿井积水对邻近生产矿井的影响. 工矿自动化. 2022(04): 60-65 .
    5. 杨岗. 分布式计算在闭坑矿井汇水过程的应用. 中国煤炭地质. 2021(12): 26-30+64 .
    6. 张文斌,吴基文,翟晓荣,胡儒,毕尧山,王广涛. 闭坑矿井矿界煤柱采动损伤及其安全性评价. 工矿自动化. 2020(02): 39-44 .
    7. 吴玉川,李磊. 废弃煤矿积水对相邻煤矿的威胁分析. 科学技术创新. 2020(18): 154-156 .
    8. 吴玉川,王东晟,孙冰,李磊. 受闭坑影响的矿井水流场演变研究. 内蒙古煤炭经济. 2020(02): 7-8 .
    9. 才向军,韩瑞刚,孟璐,杨俊文. 赵各庄矿闭坑地下水安全警戒水位控制研究. 煤炭工程. 2020(09): 116-121 .
    10. 许延春,盖秋凯,黄磊,禹云雷,沈星宇,庞龙. 闭坑矿井积水对相邻生产矿井防治水的影响. 煤炭科学技术. 2020(09): 96-101 .
    11. 杨高峰,卫金善,杨新亮,窦文武. 晋城矿区凤凰山矿周边闭坑矿井水害分析及治理. 煤田地质与勘探. 2019(S1): 14-19 . 本站查看

    Other cited types(11)

Catalog

    Article Metrics

    Article views (179) PDF downloads (43) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return