Citation: | TONG Yanjun,YANG Zundong,SONG Jie,et al. Exploring the wetting mechanism of surfactants for coals based on molecular simulations[J]. Coal Geology & Exploration,2023,51(8):127−138. DOI: 10.12363/issn.1001-1986.23.03.0110 |
With a gradual increase in the depth and mechanization degree of coal mining, secondary explosions of gas and coal dust have become increasingly severe. Chemical dust suppressants such as surfactants can reduce these explosions by effectively inhibiting the generation and diffusion of coal dust. To explore the inhibition mechanism of nonionic surfactants for hydrophobic coal dust, this study analyzed the basic physicochemical properties of typical hydrophobic coal dust at a depth of 1050 m using FT-IR, XRF, and XRD. This study built a molecular structure model of coal dust by combining test techniques such as EA, XPS, and 13C NMR. It also investigated the equilibrium adsorption configuration and molecular spatial distribution of the water-surfactant-coal wetting adsorption systems by establishing a molecular model. Then, this study designed an experiment to examine the compositions of the surface free energy of coal dust before and after surfactant adsorption, followed by verifying and discussing the wetting adsorption mechanism of surfactants on coal dust interfaces. The results show that surfactants can form an effective directional adsorption layer, which is tight and has a high coverage degree, on the surface of hydrophobic coal dust. The hydrophobic structure of the coal dust surface is covered by the hydrophobic tail chains of surfactants, with the hydrophilic head groups facing the aqueous phase, increasing the polar components of surface free energy of the coal dust. As a result, the hydrophobic coal dust surfaces become hydrophilic. The results of this study can provide theoretical guidance and a reference for efficient dust suppression in coal mining.
[1] |
GAO Mingzhong,ZHANG Zhilong,YIN Xiangang,et al. The location optimum and permeability−enhancing effect of a low–level shield rock roadway[J]. Rock Mechanics and Rock Engineering,2018,51(9):2935−2948. DOI: 10.1007/s00603-018-1461-x
|
[2] |
GAO Mingzhong, XIE Jing, GUO Jun, et al. Fractal evolution and connectivity characteristics of mining−induced crack networks in coal masses at different depths[J]. Geomechanics and Geophysics for Geo–Energy and Geo–Resources, 2021, 7(1): 1−15.
|
[3] |
GAO Mingzhong,ZHANG Jianguo,LI Shengwei,et al. Calculating changes in fractal dimension of surface cracks to quantify how the dynamic loading rate affects rock failure in deep mining[J]. Journal of Central South University,2020,27(10):3013−3024. DOI: 10.1007/s11771-020-4525-5
|
[4] |
GAO Mingzhong,XIE Jing,GAO Yanan,et al. Mechanical behavior of coal under different mining rates:A case study from laboratory experiments to field testing[J]. International Journal of Mining Science and Technology,2021,31(5):825−841. DOI: 10.1016/j.ijmst.2021.06.007
|
[5] |
GAO Mingzhong,HAO Haichun,XUE Shouning,et al. Discing behavior and mechanism of cores extracted from Songke–2 well at depths below 4,500 m[J]. International Journal of Rock Mechanics and Mining Sciences,2022,149:104976. DOI: 10.1016/j.ijrmms.2021.104976
|
[6] |
周福宝,李建龙,李世航,等. 综掘工作面干式过滤除尘技术实验研究及实践[J]. 煤炭学报,2017,42(3):639−645. DOI: 10.13225/j.cnki.jccs.2016.1150
ZHOU Fubao,LI Jianlong,LI Shihang,et al. Experimental investigation and application of dry–type filtering dust collection technology in fully mechanized excavation face[J]. Journal of China Coal Society,2017,42(3):639−645. DOI: 10.13225/j.cnki.jccs.2016.1150
|
[7] |
张建国,李红梅,刘依婷,等. 煤尘微细观润湿特性及抑尘剂研发初探:以平顶山矿区为例[J]. 煤炭学报,2021,46(3):812−825.
ZHANG Jianguo,LI Hongmei,LIU Yiting,et al. Micro–wetting characteristics of coal dust and preliminary study on the development of dust suppressant in Pingdingshan mining area[J]. Journal of China Coal Society,2021,46(3):812−825.
|
[8] |
金龙哲. 我国作业场所粉尘职业危害现状与对策分析[J]. 安全,2020,41(1):1−6. DOI: 10.19737/j.cnki.issn1002-3631.2020.01.001
JIN Longzhe. The occupational hazards and strategy analysis of dust exposure in workplace in China[J]. Safety & Security,2020,41(1):1−6. DOI: 10.19737/j.cnki.issn1002-3631.2020.01.001
|
[9] |
高明忠,王明耀,谢晶,等. 深部煤岩原位扰动力学行为研究[J]. 煤炭学报,2020,45(8):2691−2703. DOI: 10.13225/j.cnki.jccs.2020.0784
GAO Mingzhong,WANG Mingyao,XIE Jing,et al. In–situ disturbed mechanical behavior of deep coal rock[J]. Journal of China Coal Society,2020,45(8):2691−2703. DOI: 10.13225/j.cnki.jccs.2020.0784
|
[10] |
SINGH B P. The role of surfactant adsorption in the improved dewatering of fine coal[J]. Fuel,1999,78(4):501−506. DOI: 10.1016/S0016-2361(98)00169-0
|
[11] |
CRAWFORD R J,MAINWARING D E. The influence of surfactant adsorption on the surface characterisation of Australian coals[J]. Fuel,2001,80(3):313−320. DOI: 10.1016/S0016-2361(00)00110-1
|
[12] |
KILAU H W,PAHLMAN J E. Coal wetting ability of surfactant solutions and the effect of multivalent anion additions[J]. Colloids and Surfaces,1987,26:217−242. DOI: 10.1016/0166-6622(87)80118-X
|
[13] |
阎杰. 基于表面特性的煤尘润湿性质研究[D]. 北京: 中国矿业大学(北京), 2019.
YAN Jie. Study on wettability of coal dust based on its surface properties[D]. Beijing: China University of Mining & Technology (Beijing), 2019.
|
[14] |
胡强. 表面活性离子液体影响煤尘润湿性的实验研究[D]. 徐州: 中国矿业大学, 2020.
HU Qiang. Experimental study on effect of surface active ionic liquids on coal dust wettability[D]. Xuzhou: China University of Mining & Technology, 2020.
|
[15] |
GUTIERREZ–RODRIGUEZ J A,PURCELL R J,APLAN F F. Estimating the hydrophobicity of coal[J]. Colloids and Surfaces,1984,12:1−25. DOI: 10.1016/0166-6622(84)80086-4
|
[16] |
HU Yingying,ZHANG Qingtao,ZHOU Gang,et al. Influence mechanism of surfactants on wettability of coal with different metamorphic degrees based on infrared spectrum experiments[J]. ACS omega,2021,6(34):22248−22258. DOI: 10.1021/acsomega.1c02954
|
[17] |
REN Xiaoyuan, YANG Zhiyuan, QU Shicun, et al. The effect of sodium dodecyl sulphate (SDS) on wettability of different coals[J]. Advanced Materials Research, 2013, 2482(734/735/736/737): 513–516.
|
[18] |
杨兆中,韩金轩,张健,等. 泡沫压裂液添加剂对煤层甲烷扩散影响的分子模拟[J]. 煤田地质与勘探,2019,47(5):94−103. DOI: 10.3969/j.issn.1001-1986.2019.05.013
YANG Zhaozhong,HAN Jinxuan,ZHANG Jian,et al. Molecular simulation of the influence of foam fracturing fluid additives on coalbed methane diffusion[J]. Coal Geology & Exploration,2019,47(5):94−103. DOI: 10.3969/j.issn.1001-1986.2019.05.013
|
[19] |
孙致学,闵成,张婉露,等. CO2/N2二元气体对甲烷在煤中吸附影响的分子模拟研究[J]. 煤田地质与勘探,2022,50(3):127−136. DOI: 10.12363/issn.1001-1986.21.11.0657
SUN Zhixue,MIN Cheng,ZHANG Wanlu,et al. Molecular simulation of the effect of CO2/N2 binary gas on methane adsorption in coal[J]. Coal Geology & Exploration,2022,50(3):127−136. DOI: 10.12363/issn.1001-1986.21.11.0657
|
[20] |
孟筠青,张硕,曹子豪,等. 屯留矿煤分子孔隙重构及其表征与分析[J]. 煤炭学报,2022,47(增刊1):160−170.
MENG Junqing,ZHANG Shuo,CAO Zihao,et al. Insight on coal molecular–scale pore reconstruction of Tunliu mine and its characterization and analysis[J]. Journal of China Coal Society,2022,47(Sup.1):160−170.
|
[21] |
TANG Honghu,ZHAO Lihua,SUN Wei,et al. Surface characteristics and wettability enhancement of respirable sintering dust by nonionic surfactant[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,509:323−333.
|
1. |
王大兴,胡海燕,邹佳群,王涛,朱根根,陈笑宇,梁烁. 准噶尔盆地东道海子凹陷二叠系下乌尔禾组陆相页岩气形成富集条件及主控因素. 地质科技通报. 2024(04): 98-112 .
![]() | |
2. |
任诺,宋怀雷,杨超,王文涛. 页岩在水压致裂过程中破裂规律的数值模拟研究. 水利规划与设计. 2023(01): 101-107 .
![]() | |
3. |
邱凯旋,李恒,郝世彦,张丽霞,唐永槐,马玉珊. 含砂岩薄互层陆相页岩气藏生产预测模型研究. 非常规油气. 2023(01): 111-121 .
![]() | |
4. |
李泽帆,陈相霖,李树刚,郭睿良,李泳,刘鹏. 高—过成熟页岩CH_4/N_2/CO_2混合气体竞争吸附特征与地质意义. 天然气地球科学. 2023(01): 169-180 .
![]() | |
5. |
魏若飞,信凯. 鄂尔多斯盆地东缘石西区块煤层气及致密砂岩气资源潜力评价. 中国煤炭地质. 2022(07): 7-11+38 .
![]() | |
6. |
李海,赵昌杰,王文涛. 不同层理倾角与石英含量下页岩破裂过程数值试验研究. 水利规划与设计. 2022(11): 108-113+167 .
![]() | |
7. |
李浩. 延长探区南部盒8段稀土元素地球化学示踪. 云南化工. 2021(06): 129-132 .
![]() | |
8. |
陆雨诗,胡勇,侯云东,孙继峰,何文祥,高小洋,司锦,宋雯馨. 鄂尔多斯盆地西缘羊虎沟组微量元素地球化学特征及沉积环境指示意义. 科学技术与工程. 2021(28): 11999-12009 .
![]() | |
9. |
客昆,秦建华,牟必鑫,余谦,魏洪刚,郝学峰,陈杨,客达,周家云,龚大兴. 楚雄盆地上三叠统舍资组泥页岩储层特征分析——以滇禄地3井为例. 科学技术与工程. 2021(28): 12020-12030 .
![]() | |
10. |
娄义黎,邬忠虎,王安礼,左宇军,刘镐,孙文吉斌. 流固耦合作用下页岩破裂过程的数值模拟. 煤田地质与勘探. 2020(01): 105-112 .
![]() | |
11. |
王羽,汪丽华,王建强,王彦飞. 利用微米X射线显微镜研究陆相延长组页岩孔隙结构特征. 岩矿测试. 2020(04): 566-577 .
![]() | |
12. |
和钰凯,李贤庆,魏强,张学庆,邹晓艳,张亚超,李阳阳. 淮南潘谢矿区石盒子组煤系页岩气储层孔隙结构特征及影响因素. 科学技术与工程. 2020(33): 13618-13627 .
![]() | |
13. |
孙细宁,陈奕奕,王桂成,姜呈馥,许小强. 延长探区陆相页岩气产能影响因素分析. 复杂油气藏. 2019(04): 8-14 .
![]() | |
14. |
景丰. 陆相页岩气水平井中增韧防气窜固井水泥浆体系的研究. 石油化工应用. 2018(07): 5-10 .
![]() |