DU Shouhang,LI Wei,XING Jianghe,et al. Change detection of open-pit mines based on FM-UNet++ and GF-2 satellite images[J]. Coal Geology & Exploration,2023,51(7):130−139. DOI: 10.12363/issn.1001-1986.22.12.0972
Citation: DU Shouhang,LI Wei,XING Jianghe,et al. Change detection of open-pit mines based on FM-UNet++ and GF-2 satellite images[J]. Coal Geology & Exploration,2023,51(7):130−139. DOI: 10.12363/issn.1001-1986.22.12.0972

Change detection of open-pit mines based on FM-UNet++ and GF-2 satellite images

More Information
  • Received Date: December 24, 2022
  • Revised Date: May 30, 2023
  • Available Online: July 10, 2023
  • Automatic extraction of land use change information in open-pit mines using the remote sensing and deep learning technology is of great significance for the mining monitoring and ecological environmental protection. A novel deep learning model FM-UNet++ was constructed for the change of land use types in complex and heterogeneous mining scenarios, and the automatic change detection of open-pit mines was achieved using the Gaofen-2 (GF-2) satellite images. Firstly, the change detection dataset of open-pit mine was produced through data surveys and visual interpretation, which was augmented by data enhancement. Secondly, the FM-UNet++ for open-pit mine change detection was constructed by introducing the Feature-enhanced Coordinate Attention (FECA) mechanism and the Mish activation function into the UNet++. Finally, FM-UNet++ and 7 comparative models were trained for the change detection experiment of open-pit mine and the detection results of different deep learning models were compared. The results show that: (1) The FECA mechanism and the Mish activation function both improve the performance of the UNet++ for open-pit mine change detection. (2) The precision, recall, F1-Score and IoU of FM-UNet++ model are 95.6%, 89.2%, 92.3% and 85.7% respectively for the change detection of open-pit mine, which is significantly improved compared with the deep learning models such as FCN, PSPNet, Deeplab v3+, LANet, UNet, UNet++ and DA-UNet++. Besides, the change detection speed of the FM-UNet++ model remains in the same order of magnitude as the 7 comparative models mentioned above, with a stable training process, validating the feasibility of applying the FM-UNet++ model to the change detection in open-pit mines.

  • [1]
    李军,彭苏萍,张成业,等. 矿区生态环境定量遥感监测评价技术框架与应用[J]. 矿业科学学报,2022,7(1):9−25. DOI: 10.19606/j.cnki.jmst.2022.01.002

    LI Jun,PENG Suping,ZHANG Chengye,et al. Quantitative remote sensing–based monitoring and evaluation of the ecological environment in mining areas:Technology framework and application[J]. Journal of Mining Science and Technology,2022,7(1):9−25. DOI: 10.19606/j.cnki.jmst.2022.01.002
    [2]
    张成业,李军,雷少刚,等. 矿区生态环境定量遥感监测研究进展与展望[J]. 金属矿山,2022(3):1−27. DOI: 10.19614/j.cnki.jsks.202203001

    ZHANG Chengye,LI Jun,LEI Shaogang,et al. Progress and prospect of the quantitative remote sensing for monitoring the eco–environment in mining area[J]. Metal Mine,2022(3):1−27. DOI: 10.19614/j.cnki.jsks.202203001
    [3]
    向阳,赵银娣,董霁红. 基于改进UNet孪生网络的遥感影像矿区变化检测[J]. 煤炭学报,2019,44(12):3773−3780. DOI: 10.13225/j.cnki.jccs.SH19.1026

    XIANG Yang,ZHAO Yindi,DONG Jihong. Remote sensing image mining area change detection based on improved UNet siamese network[J]. Journal of China Coal Society,2019,44(12):3773−3780. DOI: 10.13225/j.cnki.jccs.SH19.1026
    [4]
    李军,张艺藂,张彩月,等. 基于LandTrendr和CCDC算法的神东煤炭基地植被损毁识别对比分析[J]. 金属矿山,2023,559(1):55−64. DOI: 10.19614/j.cnki.jsks.202301006

    LI Jun,ZHANG Yicong,ZHANG Caiyue,et al. Applicability analysis of land trendr and CCDC algorithms for vegetation damage identification in Shendong coal base[J]. Metal Mine,2023,559(1):55−64. DOI: 10.19614/j.cnki.jsks.202301006
    [5]
    李军,彭传盈,张成业,等. 基于大样本的露天开采植被扰动范围一般性统计规律−以神东煤炭基地为例[J]. 煤炭学报,2023,48(2):975−985. DOI: 10.13225/j.cnki.jccs.XH22.1657

    LI Jun,PENG Chuanying,ZHANG Chengye,et al. General statistical rules of vegetation disturbance range by open–pit mining based on a large sample:A case study of Shendong coal base[J]. Journal of China Coal Society,2023,48(2):975−985. DOI: 10.13225/j.cnki.jccs.XH22.1657
    [6]
    陈宇,杜培军,唐伟成,等. 基于BJ–1小卫星遥感数据的矿区土地覆盖变化检测[J]. 国土资源遥感,2011(3):146−150.

    CHEN Yu,DU Peijun,TANG Weicheng,et al. Land cover change detection in coal mining area using BJ–1 small satellite remote sensing data[J]. Remote Sensing for Land & Resources,2011(3):146−150.
    [7]
    SHI Wenzhong,ZHANG Min,ZHANG Rui,et al. Change detection based on artificial intelligence:State–of–the–art and challenges[J]. Remote Sensing,2020,12(10):1688. DOI: 10.3390/rs12101688
    [8]
    袁洲,郭海涛,卢俊,等. 融合UNet++网络和注意力机制的高分辨率遥感影像变化检测算法[J]. 测绘科学技术学报,2021,38(2):155−159.

    YUAN Zhou,GUO Haitao,LU Jun,et al. High–resolution remote sensing image change detection technology based on UNet++ and attention mechanism[J]. Journal of Geomatics Science and Technology,2021,38(2):155−159.
    [9]
    杜青松,李国玉,彭万林,等. 基于遥感技术的高寒矿区土地利用变化研究[J]. 环境科学与技术,2020,43(12):185−194. DOI: 10.19672/j.cnki.1003-6504.2020.12.025

    DU Qingsong,LI Guoyu,PENG Wanlin,et al. Land use changes in high cold–altitude mining area based on remote sensing technology[J]. Environmental Science & Technology,2020,43(12):185−194. DOI: 10.19672/j.cnki.1003-6504.2020.12.025
    [10]
    尚慧,倪万魁. 石嘴山矿区地表环境动态变化遥感监测[J]. 国土资源遥感,2013,25(2):113−120.

    SHANG Hui,NI Wankui. Remote sensing monitoring of dynamic changes of surface environment in Shizuishan mining area[J]. Remote Sensing for Land & Resources,2013,25(2):113−120.
    [11]
    魏矿灵,王启春,郭广礼,等. 利用遥感数据监测矿区开采沉陷积水变化[J]. 煤矿安全,2014,45(1):13−16. DOI: 10.13347/j.cnki.mkaq.2014.01.004

    WEI Kuangling,WANG Qichun,GUO Guangli,et al. Using remote sensing data to monitor the change of mining subsidence water accumulation[J]. Safety in Coal Mines,2014,45(1):13−16. DOI: 10.13347/j.cnki.mkaq.2014.01.004
    [12]
    杜培军,柳思聪,郑辉. 基于支持向量机的矿区土地覆盖变化检测[J]. 中国矿业大学学报,2012,41(2):262−267.

    DU Peijun,LIU Sicong,ZHENG Hui. Land cover change detection over mining areas based on support vector machine[J]. Journal of China University of Mining and Technology,2012,41(2):262−267.
    [13]
    程久龙,王慧杰,徐忠忠,等. 基于全卷积神经网络的钻孔瞬变电磁法岩层富水性预测研究[J]. 煤田地质与勘探,2023,51(1):289−297. DOI: 10.12363/issn.1001-1986.22.12.0937

    CHENG Jiulong,WANG Huijie,XU Zhongzhong,et al. Research on aquifer water abundance evaluation by borehole transient electromagnetic method based on FCNN[J]. Coal Geology & Exploration,2023,51(1):289−297. DOI: 10.12363/issn.1001-1986.22.12.0937
    [14]
    董丽丽,费城,张翔,等. 基于LSTM神经网络的煤矿突水预测[J]. 煤田地质与勘探,2019,47(2):137−143.

    DONG Lili,FEI Cheng,ZHANG Xiang,et al. Coal mine water inrush prediction based on LSTM neural network[J]. Coal Geology & Exploration,2019,47(2):137−143.
    [15]
    LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, 2015: 3431–3440.
    [16]
    ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 2881–2890.
    [17]
    CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder–decoder with atrous separable convolution for semantic image segmentation[C]//2018 European Conference on Computer Vision (ECCV). Munich, Germany, 2018: 833–851.
    [18]
    RONNEBERGER O, FISCHER P, BROX T. U–Net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer−Assisted Intervention. Cham: Springer, 2015: 234–241.
    [19]
    ZHOU Zongwei,RAHMAN S M M,NIMA T,et al. UNet++:Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging,2019,39(6):1856−1867.
    [20]
    HUANG Gao, LIU Zhuang, MAATEN L V D, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 4700–4708.
    [21]
    MISRA D. Mish:A self regularized non–monotonic neural activation function[J]. CoRR,2019,4(2):10.48550.
    [22]
    HU Jie, SHEN Li, SUN Gang. Squeeze−and−excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 7132–7141.
    [23]
    WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]//2018 European Conference on Computer Vision (ECCV). Munich, Germany, 2018: 3–19.
    [24]
    PARK J, WOO S, LEE J Y, et al. BAM: Bottleneck attention module: 10. 48550/arXiv. 1807. 06514[P]. 2018-07-17.
    [25]
    HOU Qibin, ZHOU Daquan, FENG Jiashi. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, 2021: 13713–13722.
    [26]
    张成业,李飞跃,李军,等. 基于DeepLabv3+与GF–2高分辨率影像的露天煤矿区土地利用分类[J]. 煤田地质与勘探,2022,50(6):94−103. DOI: 10.12363/issn.1001-1986.22.01.0029

    ZHANG Chengye,LI Feiyue,LI Jun,et al. Recognition of land use on open−pit coal mining area based on DeepLabv3+ and GF−2 high−resolution images[J]. Coal Geology & Exploration,2022,50(6):94−103. DOI: 10.12363/issn.1001-1986.22.01.0029
    [27]
    LIU Ruochen,JIANG Dawei,ZHANG Langlang,et al. Deep depthwise separable convolutional network for change detection in optical aerial images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:1109−1118. DOI: 10.1109/JSTARS.2020.2974276
    [28]
    DING Lei,TANG Hao,BRUZZONE L. LANet:Local attention embedding to improve the semantic segmentation of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,59(1):426−435.
    [29]
    DU Shouhang,LI Wei,LI Jun,et al. Open–pit mine change detection from high resolution remote sensing images using DA–UNet++ and object–based approach[J]. International Journal of Mining,Reclamation and Environment,2022,36(7):512−535. DOI: 10.1080/17480930.2022.2072102

Catalog

    Article Metrics

    Article views (350) PDF downloads (53) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return