ZHANG Xuhui,YANG Hongqiang,BAI Linna,et al. Research on low illumination video enhancement technology in coal mine heading face[J]. Coal Geology & Exploration,2023,51(1):309−316. DOI: 10.12363/issn.1001-1986.22.09.0689
Citation: ZHANG Xuhui,YANG Hongqiang,BAI Linna,et al. Research on low illumination video enhancement technology in coal mine heading face[J]. Coal Geology & Exploration,2023,51(1):309−316. DOI: 10.12363/issn.1001-1986.22.09.0689

Research on low illumination video enhancement technology in coal mine heading face

More Information
  • Received Date: September 12, 2022
  • Revised Date: November 19, 2022
  • Available Online: January 11, 2023
  • Aiming at overcoming low illumination, uneven brightness, blurry texture and more noise in the video of coal mine heading face, a low illumination video enhancement algorithm was proposed for coal mine heading face. Firstly, the separability of convolution was utilized to carry out one-dimensional horizontal and vertical convolution of video images, then the perfect reflection method was used to achieve the automatic white balance, and the image hybrid enhancement technology was utilized to improve the overall brightness of the video images. Then, the image was divided into the highlight area, the middle tone area and the dark tone area by recursive segmentation based on the atmospheric scattering model and the dark channel prior method, and the maximum channel pixel of the corresponding interval was obtained. Besides, the mean value of the three maximum pixel values was taken as the estimation value of atmospheric illumination, and the transmittance was adjusted and optimized by introducing the adjustment factor. Meanwhile, the Laplacian sharpening process was used to increase the high frequency component and suppress the low frequency component of the image to increase the image contrast. Finally, the low-illumination video of heading face was dehazed based on the improved atmospheric scattering model. The experimental results show that the proposed video enhancement algorithm could enhance and dehaze the low-illumination video of coal mine heading face in real time, which avoids the problems of dimness, distortion, blurring and mutation of video images. Compared with Retinex algorithm, ALTM algorithm and dark channel prior algorithm, the proposed video enhancement algorithm significantly improves the information entropy, standard deviation and average gradient of the video image, and has a higher real-time processing speed, which can provide high-quality and reliable support for subsequent processings such as video target recognition, target tracking, target monitoring and image segmentation of heading face video.

  • [1]
    王国法. 加快煤矿智能化建设 推进煤炭行业高质量发展[J]. 中国煤炭,2021,47(1):2−10. DOI: 10.3969/j.issn.1006-530X.2021.01.002

    WANG Guofa. Speeding up intelligent construction of coal mine and promoting high−quality development of coal industry[J]. China Coal,2021,47(1):2−10. DOI: 10.3969/j.issn.1006-530X.2021.01.002
    [2]
    王国法,任怀伟,赵国瑞,等. 煤矿智能化十大“痛点”解析及对策[J]. 工矿自动化,2021,47(6):1−11. DOI: 10.13272/j.issn.1671-251x.17808

    WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Analysis and countermeasures of ten“pain points”of intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):1−11. DOI: 10.13272/j.issn.1671-251x.17808
    [3]
    付燕,李瑶,严斌斌. 一种煤矿井下视频图像增强算法[J]. 工矿自动化,2018,44(7):80−83. DOI: 10.13272/j.issn.1671-251x.2017120014

    FU Yan,LI Yao,YAN Binbin. An underground video image enhancement algorithm[J]. Industry and Mine Automation,2018,44(7):80−83. DOI: 10.13272/j.issn.1671-251x.2017120014
    [4]
    袁明道,谭彩,李阳,等. 基于图像融合和改进阈值的管道机器人探测图像增强方法[J]. 煤田地质与勘探,2019,47(4):178−185. DOI: 10.3969/j.issn.1001-1986.2019.04.027

    YUAN Mingdao,TAN Cai,LI Yang,et al. A pipeline robot detection image enhancement method based on image fusion and improved threshold[J]. Coal Geology & Exploration,2019,47(4):178−185. DOI: 10.3969/j.issn.1001-1986.2019.04.027
    [5]
    智宁,毛善君,李梅. 基于照度调整的矿井非均匀照度视频图像增强算法[J]. 煤炭学报,2017,42(8):2190−2197. DOI: 10.13225/j.cnki.jccs.2017.0048

    ZHI Ning,MAO Shanjun,LI Mei. Enhancement algorithm based on illumination adjustment for non–uniform illumination video images in coal mine[J]. Journal of China Coal Society,2017,42(8):2190−2197. DOI: 10.13225/j.cnki.jccs.2017.0048
    [6]
    GUO Xiaojie,LI Yu,LING Haibin. LIME:Low–light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing,2017,26(2):982−993. DOI: 10.1109/TIP.2016.2639450
    [7]
    董静薇,赵春丽,海博. 融合同态滤波和小波变换的图像去雾算法研究[J]. 哈尔滨理工大学学报,2019,24(1):66−70. DOI: 10.15938/j.jhust.2019.01.011

    DONG Jingwei,ZHAO Chunli,HAI Bo. Image research on image de–fog algorithm based on fusion homomorphic filtering and wavelet transform[J]. Journal of Harbin University of Science and Technology,2019,24(1):66−70. DOI: 10.15938/j.jhust.2019.01.011
    [8]
    龚云, 颉昕宇. 一种改进同态滤波的井下图像增强算法[J/OL]. 煤炭科学技术, 2022: 1–8[2022-11-22]. DOI: 10.13199/j.cnki.cst.2021-0774.

    GONG Yun, XIE Xinyu. A downhole image enhancement algorithm based on improved homomorphic filtering[J/OL]. Coal Science and Technology, 2022: 1–8[2022-11-22]. DOI: 10.13199/j.cnki.cst.2021-0774.
    [9]
    LI Zhi,JIA Zhenhong,YANG Jie,et al. Low illumination video image enhancement[J]. IEEE Photonics Journal,2020,12(4):1−13.
    [10]
    郭伶俐,贾振红. 基于大气散射模型的低照度视频增强算法[J]. 激光杂志,2022,43(6):105−110. DOI: 10.14016/j.cnki.jgzz.2022.06.105

    GUO Lingli,JIA Zhenhong. Low illumination video enhancement algorithm based on the atmospheric scattering model[J]. Laser Journal,2022,43(6):105−110. DOI: 10.14016/j.cnki.jgzz.2022.06.105
    [11]
    蔡利梅,向秀华,李紫阳. 自适应HSV空间Retinex煤矿监控图像增强算法[J]. 电视技术,2017,41(4/5):11−15. DOI: 10.16280/j.videoe.2017.h4.003

    CAI Limei,XIANG Xiuhua,LI Ziyang. Adaptive Retinex algorithm at HSV space for coal mine monitoring image enhancement[J]. Video Engineering,2017,41(4/5):11−15. DOI: 10.16280/j.videoe.2017.h4.003
    [12]
    HE Kaiming,SUN Jian,TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2341−2353. DOI: 10.1109/TPAMI.2010.168
    [13]
    蔡秀梅,马今璐,吴成茂,等. 基于模糊同态滤波的彩色图像增强算法[J]. 计算机仿真,2020,37(6):342−346. DOI: 10.3969/j.issn.1006-9348.2020.06.070

    CAI Xiumei,MA Jinlu,WU Chengmao,et al. Color image enhancement algorithm based on fuzzy homomorphic filtering[J]. Computer Simulation,2020,37(6):342−346. DOI: 10.3969/j.issn.1006-9348.2020.06.070
    [14]
    程德强,郑珍,姜海龙. 一种煤矿井下图像增强算法[J]. 工矿自动化,2015,41(12):31−34. DOI: 10.13272/j.issn.1671-251x.2015.12.009

    CHENG Deqiang,ZHENG Zhen,JIANG Hailong. An image enhancement algorithm for coal mine underground[J]. Industry and Mine Automation,2015,41(12):31−34. DOI: 10.13272/j.issn.1671-251x.2015.12.009
    [15]
    汪凤林,周扬,叶绿,等. 基于机器视觉的飞轮齿圈缺陷和尺寸检测方法[J]. 中国测试,2020,46(5):31−38. DOI: 10.11857/j.issn.1674-5124.2020020005

    WANG Fenglin,ZHOU Yang,YE Lyu,et al. Method for fault defection and size measurement for flywheel ring gear based on machine vision[J]. China Measurement & Testing Technology,2020,46(5):31−38. DOI: 10.11857/j.issn.1674-5124.2020020005
    [16]
    方建荣,苏畅,周晓方,等. 一种CMOS图像传感器信号处理自动白平衡算法[J]. 计算机工程,2015,41(9):245−250. DOI: 10.3969/j.issn.1000-3428.2015.09.045

    FANG Jianrong,SU Chang,ZHOU Xiaofang,et al. An algorithm of automatic white balance for CMOS image sensor signal processing[J]. Computer Engineering,2015,41(9):245−250. DOI: 10.3969/j.issn.1000-3428.2015.09.045
    [17]
    NAYAR S K, NARASIMHAN S G. Vision in bad weather[C]//Proceedings of the IEEE International Conference on Computer Vision, 1999: 820–827.
    [18]
    DONG Xuan, WANG Guan, PANG Yi, et al. Fast efficient algorithm for enhancement of low lighting video[C]//IEEE International Conference on Multimedia and Expo, 2011: 1–6.
    [19]
    贾海鹏,张云泉,龙国平,等. 基于OpenCL的拉普拉斯图像增强算法优化研究[J]. 计算机科学,2012,39(5):271−277. DOI: 10.3969/j.issn.1002-137X.2012.05.065

    JIA Haipeng,ZHANG Yunquan,LONG Guoping,et al. Research on Laplace image enhancement algorithm optimization based on OpenCL[J]. Computer Science,2012,39(5):271−277. DOI: 10.3969/j.issn.1002-137X.2012.05.065
    [20]
    王小东,冯筠,鲁定国,等. 基于先验知识的肝脏轮廓线提取算法研究[J]. 计算机应用研究,2014,31(1):281−284. DOI: 10.3969/j.issn.1001-3695.2014.01.066

    WANG Xiaodong,FENG Jun,LU Dingguo,et al. Liver contour extraction based on prior knowledge model[J]. Application Research of Computers,2014,31(1):281−284. DOI: 10.3969/j.issn.1001-3695.2014.01.066
    [21]
    王媛彬,韦思雄,段誉,等. 基于自适应双通道先验的煤矿井下图像去雾算法[J]. 工矿自动化,2022,48(5):46−51. DOI: 10.13272/j.issn.1671-251x.2021110053

    WANG Yuanbin,WEI Sixiong,DUAN Yu,et al. Defogging algorithm of underground coal mine image based on adaptive dual−channel prior[J]. Industry and Mine Automation,2022,48(5):46−51. DOI: 10.13272/j.issn.1671-251x.2021110053
    [22]
    张英俊,雷耀花,潘理虎. 基于暗原色先验的煤矿井下图像增强技术[J]. 工矿自动化,2015,41(3):80−83. DOI: 10.13272/j.issn.1671-251x.2015.03.020

    ZHANG Yingjun,LEI Yaohua,PAN Lihu. Enhancement technique of underground image based on dark channel prior[J]. Industry and Mine Automation,2015,41(3):80−83. DOI: 10.13272/j.issn.1671-251x.2015.03.020
  • Related Articles

    [1]ZHANG Chaolin, WANG Yibo, WANG Enyuan, ZENG Wei, WANG Peizhong. Experimental study on the migration and distribution law of pulverized coal in roadway during coal and gas outburst[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(6): 11-19. DOI: 10.12363/issn.1001-1986.22.01.0052
    [2]GAO Xiaoliang, JU Pei, ZHAO Jianguo. Design and application of PDC bit for large diameter directional drilling of coal seam roof with double stage and double speed[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 272-277. DOI: 10.3969/j.issn.1001-1986.2021.05.031
    [3]WANG Wenfeng, WANG Wenlong, LIU Shuangshuang, BAI Hongyang, WANG Yulong, DUAN Piaopiao, QIN Kemin, CHEN Yilin. Distribution and occurrence of uranium in coal and its migration behavior during the coal utilization[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(1): 65-80. DOI: 10.3969/j.issn.1001-1986.2021.01.007
    [4]ZHANG Weiguo, LI Huantong, WANG Feng, YANG Fu, TENG Jinxiang. Solid-liquid migration of molybdenum in stone coal and coal ash in southern Shaanxi[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 64-70. DOI: 10.3969/j.issn.1001-1986.2020.02.011
    [5]YE Wanjun, LIU Zhongxiang, YANG Gengshe, ZHAO Zhipeng. Test of water migration of remolded loess under temperature variation[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 126-130. DOI: 10.3969/j.issn.1001-1986.2017.04.022
    [6]DU Yebo, ZHU Xiaomin, WANG yun, WANG Li, YU Zhaohua, YUAN Zhiyun. Application of prestack depth migration in QMQ area[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(3): 63-66. DOI: 10.3969/j.issn.1001-1986.2011.03.013
    [7]ZHENG Zhi-jun, ZHANG Jin-biao, WANG Wen-juan. Measurement of in-situ stresses with acoustic emission effect in Haizi coal mine[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(2): 68-72.
    [8]Xia Yujing. THE SHALLOW FORMATION WAVE SPEED DETECTED BY STEADY-STATE RAYLEIGH WAVE METHOD[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(6): 67-69.
    [9]Liu Shengdong, Yang Yumin, Hu Shaolong. EXPERIMENT ON INFLUENCE OF STRESS STATES ON ELASTIC WAVE VELOCITY[J]. COAL GEOLOGY & EXPLORATION, 1996, 24(5): 50-53.
    [10]Li Zhanqiang, Zhou Zhian, Yang Weimin. STRESS MEASUREMENT AND ITS SIGNIFICANCE IN THE MINE ENGINEERING[J]. COAL GEOLOGY & EXPLORATION, 1995, 23(3): 37-40.
  • Cited by

    Periodical cited type(9)

    1. 贾永斌. 掘进工作面煤与瓦斯共采优化. 能源与节能. 2024(01): 45-50 .
    2. 陈诚,田世祥,赵佳佳,刘正堂. 基于钻孔瓦斯涌出规律的突出危险性预测模型. 中国科技论文. 2024(01): 43-49 .
    3. 李普,原晓红,雷东记. 突出煤层掘进工作面瓦斯涌出相关性及通风安全分析与应用. 能源与环保. 2024(03): 1-8 .
    4. 徐宁,边乐,方树林,王东杰,陈立伟. 高抽巷预抽采工作面爆炸危险性研究. 煤炭技术. 2024(08): 160-163 .
    5. 李润芝. 厚煤层掘进工作面煤壁瓦斯涌出防治技术研究. 煤炭技术. 2023(11): 124-127 .
    6. 姚明刚. 粗煤泥深度洗选回收工艺的优化设计. 煤炭与化工. 2022(02): 123-126 .
    7. 王洋,薛彦平. 高瓦斯厚煤层煤巷合理掘进速度研究. 内蒙古煤炭经济. 2022(03): 70-72 .
    8. 高吾斌. 深部煤巷巷旁瓦斯场的分布及演化规律研究. 内蒙古煤炭经济. 2022(14): 1-3 .
    9. 杨恒,辛新平,魏国营,李学臣,刘小磊,郝殿,贾天让,郭艳飞. 九里山矿底板岩巷施钻瓦斯涌出规律研究. 煤矿安全. 2022(12): 163-166 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (533) PDF downloads (53) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return