Citation: | JIANG Zaibing,LI Haozhe,XU Yaobo,et al. Geological adaptability analysis and operational parameter optimization for staged fracturing horizontal wells in coal seam roof[J]. Coal Geology & Exploration,2022,50(3):183−192. DOI: 10.12363/issn.1001-1986.22.01.0037 |
[1] |
周守为,朱军龙. 助力“碳达峰、碳中和”战略的路径探索[J]. 天然气工业,2021,41(12):1−8. ZHOU Shouwei,ZHU Junlong. Exploration of ways to helping“Carbon Peak and Neutrality”strategy[J]. Natural Gas Industry,2021,41(12):1−8. DOI: 10.3787/j.issn.1000-0976.2021.12.001
|
[2] |
孙海萍,张胜军,徐立昊,等. “双碳”目标下中国油气行业低碳发展措施与路径探讨[J]. 油气与新能源,2021,33(5):27−31. SUN Haiping,ZHANG Shengjun,XU Lihao,et al. Discussion on low−carbon development measures and paths of China’s oil and gas industry under the goals of “Dual Carbon”[J]. Petroleum and New Energy,2021,33(5):27−31.
|
[3] |
刘合,梁坤,张国生,等. 碳达峰、碳中和约束下我国天然气发展策略研究[J]. 中国工程科学,2021,23(6):33−42. LIU He,LIANG Kun,ZHANG Guosheng,et al. China’s natural gas development strategy under the constraints of carbon peak and carbon neutrality[J]. Strategic Study of CAE,2021,23(6):33−42.
|
[4] |
张道勇,朱杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604. ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598−1604.
|
[5] |
张群. 关于我国煤矿区煤层气开发的战略性思考[J]. 中国煤层气,2007,4(4):3−5. ZHANG Qun. Strategic thinking on coal mine methane development in China[J]. China Coalbed Methane,2007,4(4):3−5. DOI: 10.3969/j.issn.1672-3074.2007.04.001
|
[6] |
申宝宏,刘见中,雷毅. 我国煤矿区煤层气开发利用技术现状及展望[J]. 煤炭科学技术,2015,43(2):1−4. SHEN Baohong,LIU Jianzhong,LEI Yi. Present status and prospects of coalbed methane development and utilization technology of coal mine area in China[J]. Coal Science and Technology,2015,43(2):1−4.
|
[7] |
桑树勋,周效志,刘世奇,等. 应力释放构造煤煤层气开发理论与关键技术研究进展[J]. 煤炭学报,2020,45(7):2531−2543. SANG Shuxun,ZHOU Xiaozhi,LIU Shiqi,et al. Research advances in theory and technology of the stress release applied extraction of coalbed methane from tectonically deformed coals[J]. Journal of China Coal Society,2020,45(7):2531−2543.
|
[8] |
姜波,琚宜文. 构造煤结构及其储层物性特征[J]. 天然气工业,2004,24(5):27−29. JIANG Bo,JU Yiwen. Tectonic coal structure and its petrophysical features[J]. Natural Gas Industry,2004,24(5):27−29. DOI: 10.3321/j.issn:1000-0976.2004.05.009
|
[9] |
董夔,贾建称,巩泽文,等. 淮北许疃矿构造煤孔隙结构及压敏效应[J]. 煤田地质与勘探,2019,47(2):58−65. DONG Kui,JIA Jiancheng,GONG Zewen,et al. Study on pore structure and pressure−sensitive effect of tectonic coal in Huaibei Xutuan mine[J]. Coal Geology & Exploration,2019,47(2):58−65.
|
[10] |
LI Ming,JIANG Bo,LIN Shoufa,et al. Tectonically deformed coal types and pore structures in Puhe and Shanchahe coal mines in western Guizhou[J]. Mining Science and Technology(China),2011,21:353−357.
|
[11] |
HOU Quanlin,LI Huijun,FAN Junjia,et al. Structure and coalbed methane occurrence in tectonically deformed coals[J]. Science China Earth Sciences,2012,55(11):1755−1763. DOI: 10.1007/s11430-012-4493-1
|
[12] |
PAN Jienan,ZHU Haitao,HOU Quanlin,et al. Macromolecular and pore structures of Chinese tectonically deformed coal studied by atomic force microscopy[J]. Fuel,2015,139:94−101. DOI: 10.1016/j.fuel.2014.08.039
|
[13] |
张群, 姜在炳, 李彬刚, 等. 一种煤层气分段压裂水平井强化抽采方法: CN103967472B[P]. 2016-08-31.
|
[14] |
张群, 姜在炳, 李彬刚, 等. 碎软低渗煤层顶板或底板分段压裂水平井煤层气抽采方法: CN112983385B[P]. 2021-08-10.
|
[15] |
巫修平. 碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及机制研究[D]. 北京: 煤炭科学研究总院, 2017.
WU Xiuping. Research on control mechanism of fracture propagation of multi−stage hydraulic fracturing horizontal well in roof of broken soft and low permeable coal seam[D]. Beijing: China Coal Research Institute, 2017.
|
[16] |
张群,葛春贵,李伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150−159. ZHANG Qun,GE Chungui,LI Wei,et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata−in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):150−159.
|
[17] |
李彬刚. 芦岭煤矿碎软低渗煤层高效抽采技术[J]. 煤田地质与勘探,2017,45(4):81−84. LI Bingang. Technology of CBM extraction in the crushed and soft coal seam in Luling coal mine[J]. Coal Geology & Exploration,2017,45(4):81−84. DOI: 10.3969/j.issn.1001-1986.2017.04.014
|
[18] |
许耀波,朱玉双,张培河. 紧邻碎软煤层的顶板岩层水平井开发煤层气技术[J]. 天然气工业,2018,38(9):70−75. XU Yaobo,ZHU Yushuang,ZHANG Peihe. Application of CBM horizontal well development technology in the roof strata close to broken−soft coal seams[J]. Natural Gas Industry,2018,38(9):70−75. DOI: 10.3787/j.issn.1000-0976.2018.09.009
|
[19] |
方良才,李贵红,李丹丹,等. 淮北芦岭煤矿煤层顶板水平井煤层气抽采效果分析[J]. 煤田地质与勘探,2020,48(6):155−160. FANG Liangcai,LI Guihong,LI Dandan,et al. Analysis on the CBM extraction effect of the horizontal wells in the coal seam roof in Luling coal mine in Huaibei[J]. Coal Geology & Exploration,2020,48(6):155−160. DOI: 10.3969/j.issn.1001-1986.2020.06.021
|
[20] |
姜在炳,李浩哲,方良才,等. 紧邻碎软煤层顶板水平井分段穿层压裂裂缝延展机理[J]. 煤炭学报,2020,45(Sup.2):922−931. JIANG Zaibing,LI Haozhe,FANG Liangcai,et al. Fracture propagation mechanism of staged through−layer fracturing for horizontal well in roof adjacent to broken−soft coal seams[J]. Journal of China Coal Society,2020,45(Sup.2):922−931.
|
[21] |
巩泽文,贾建称,许耀波,等. 基于测井信息的煤层顶板水平井抽采煤层气技术[J]. 天然气工业,2021,41(2):83−91. GONG Zewen,JIA Jiancheng,XU Yaobo,et al. The coal seam roof strata−in horizontal well CBM gas drainage technology based on logging information[J]. Natural Gas Industry,2021,41(2):83−91.
|
[22] |
许耀波. 应力干扰下煤层顶板水平井穿层分段压裂规律[J]. 煤田地质与勘探,2020,48(4):11−18. XU Yaobo. Layer−penetrating staged fracturing law of horizontal wells within roof of coal seams under stress interference[J]. Coal Geology & Exploration,2020,48(4):11−18. DOI: 10.3969/j.issn.1001-1986.2020.04.002
|
[23] |
胡焮彭,赵永哲,徐堪社,等. 黔北矿区煤层顶板水平井钻井关键技术[J]. 煤田地质与勘探,2020,48(1):227−232. HU Xinpeng,ZHAO Yongzhe,XU Kanshe,et al. The key technology for drilling horizontal well in coal seam roof in Qianbei mining area[J]. Coal Geology & Exploration,2020,48(1):227−232. DOI: 10.3969/j.issn.1001-1986.2020.01.031
|
[24] |
方佳伟,韩保山,周加佳,等. 基于工作面全覆盖的地面瓦斯高效抽采模式研究[J]. 煤田地质与勘探,2020,48(3):81−85. FANG Jiawei,HAN Baoshan,ZHOU Jiajia,et al. Surface efficient gas extraction mode based on full coverage of working face[J]. Coal Geology & Exploration,2020,48(3):81−85. DOI: 10.3969/j.issn.1001-1986.2020.03.012
|
[25] |
李浩哲,姜在炳,舒建生,等. 水力裂缝在煤岩界面处穿层扩展规律的数值模拟[J]. 煤田地质与勘探,2020,48(2):106−113. LI Haozhe,JIANG Zaibing,SHU Jiansheng,et al. Numerical simulation of layer−crossing propagation behavior of hydraulic fractures at coal−rock interface[J]. Coal Geology & Exploration,2020,48(2):106−113. DOI: 10.3969/j.issn.1001-1986.2020.02.017
|
[26] |
张东亮. 碎软低渗煤层顶板水平井条带瓦斯预抽技术[J]. 煤矿安全,2019,50(4):72−76. ZHANG Dongliang. Strip gas pre−pumping technology in horizontal well of broken soft and low permeability coal seam roof[J]. Safety in Coal Mines,2019,50(4):72−76.
|
[27] |
巫修平,张群. 碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及控制机制[J]. 天然气地球科学,2018,29(2):268−276. WU Xiuping,ZHANG Qun. Research on controlling mechanism of fracture propagation of multi−stage hydraulic fracturing horizontal well in roof of broken soft and low permeability coal seam[J]. Natural Gas Geoscience,2018,29(2):268−276.
|
[28] |
李浩哲,姜在炳,范耀. 基于裂缝尖端应力强度因子的裂缝穿层行为分析[J]. 西安石油大学学报(自然科学版),2019,34(1):76−82. LI Haozhe,JIANG Zaibing,FAN Yao. Analysis of crack across−layer extension behavior based on stress intensity factor at crack tip[J]. Journal of Xi’an Shiyou University(Natural Science Edition),2019,34(1):76−82.
|
[29] |
成巧耘,李波波,李建华,等. 考虑支撑剂压实和嵌入作用的滑脱效应及渗流机制[J]. 煤田地质与勘探,2021,49(5):88−97. CHENG Qiaoyun,LI Bobo,LI Jianhua,et al. Slippage effect and the seepage mechanism considering the compaction and embedding action of proppant[J]. Coal Geology & Exploration,2021,49(5):88−97.
|
[30] |
唐方璇. 松软煤层支撑裂缝导流能力影响因素研究[D]. 成都: 西南石油大学, 2018.
TANG Fangxuan. Study on influence factors of fracture proppants conductivity in soft coal seam[D]. Chengdu: Southwest Petroleum University, 2018.
|
[31] |
雷毅,武文宾,陈久福. 松软煤层井下水力压裂增透技术及应用[J]. 煤矿开采,2015,20(1):105−107. LEI Yi,WU Wenbin,CHEN Jiufu. Technology of underground permeability improvement of soft coal−seam with hydrofracture and its application[J]. Coal Mining Technology,2015,20(1):105−107.
|
[32] |
雷毅. 松软煤层井下水力压裂致裂机理及应用研究[D]. 北京: 煤炭科学研究总院, 2014.
LEI Yi. Study on mechanism and application of hydraulic fracturing in soft seam underground mine[D]. Beijing: China Coal Research Institute, 2014.
|
[33] |
郑同社. 水力压裂煤储层卸压增透技术的适用性分析[J]. 河南理工大学学报(自然科学版),2013,32(5):536−539. ZHENG Tongshe. Adaptability analysis of technique to improve gas permeability of coal seam by hydraulic fracturing[J]. Journal of Henan Polytechnic University(Natural Science),2013,32(5):536−539.
|
[34] |
康红普,伊丙鼎,高富强,等. 中国煤矿井下地应力数据库及地应力分布规律[J]. 煤炭学报,2019,44(1):23−33. KANG Hongpu,YI Bingding,GAO Fuqiang,et al. Database and characteristics of underground in−situ stress distribution in Chinese coal mines[J]. Journal of China Coal Society,2019,44(1):23−33.
|
[35] |
许耀波,郭盛强. 软硬煤复合的煤层气水平井分段压裂技术及应用[J]. 煤炭学报,2019,44(4):1169−1177. XU Yaobo,GUO Shengqiang. Technology and application of staged fracturing in coalbed methane horizontal well of soft and hard coal composite coal seam[J]. Journal of China Coal Society,2019,44(4):1169−1177.
|
[36] |
OLSEN T N, BRENIZE G, FRENZEL T. Improvement processes for coalbed natural gas completion and stimulation[C]. SPE 84122, 2003.
|
[37] |
OLSEN T N, BRATTON T R, DONALD A, et al. Application of indirect fracturing for efficient stimulation of coalbed methane[C]. SPE 107985, 2007.
|
[38] |
郭建春,赵志红,路千里,等. 深层页岩缝网压裂关键力学理论研究进展[J]. 天然气工业,2021,41(1):102−117. GUO Jianchun,ZHAO Zhihong,LU Qianli,et al. Research progress in key mechanical theories of deep shale network fracturing[J]. Natural Gas Industry,2021,41(1):102−117.
|
[39] |
赵金洲,王强,胡永全,等. 多孔眼裂缝竞争起裂与扩展数值模拟[J]. 天然气地球科学,2020,31(10):1343−1354. ZHAO Jinzhou,WANG Qiang,HU Yongquan,et al. Numerical simulation of multi−hole fracture competition initiation and propagation[J]. Natural Gas Geoscience,2020,31(10):1343−1354.
|
[40] |
周彤,张士诚,陈铭,等. 水平井多簇压裂裂缝的竞争扩展与控制[J]. 中国科学:技术科学,2019,49(4):469−478. ZHOU Tong,ZHANG Shicheng,CHEN Ming,et al. Competitive propagation of multi−fractures and their control on multi−clustered fracturing of horizontal wells[J]. Scientia Sinica Technologica,2019,49(4):469−478. DOI: 10.1360/N092018-00059
|
[41] |
程万,蒋国盛,周治东,等. 水平井中多条裂缝同步扩展时裂缝竞争机制[J]. 岩土力学,2018,39(12):4448−4456. CHENG Wan,JIANG Guosheng,ZHOU Zhidong,et al. Fracture competition of simultaneous propagation of multiple hydraulic fractures in a horizontal well[J]. Rock and Soil Mechanics,2018,39(12):4448−4456.
|
[42] |
WU Kan,OLSON J,BALHOFF M T,et al. Numerical analysis for promoting uniform development of simultaneous multiple−fracture propagation in horizontal wells[J]. SPE Production & Operations,2016,32(1):41−50.
|
[43] |
MURPHREE C, KINTZING M, ROBINSON S, et al. Evaluating limited entry perforating & diverter completion techniques with ultrasonic perforation imaging & fiber optic DTS warmbacks[C]. SPE 199712, 2020.
|
[44] |
SOMANCHI K, BREWER J, REYNOLDS A. Extreme limited entry design improves distribution efficiency in plug−n−perf completions: Insights from fiber−optic diagnostics[C]. SPE 184834, 2017.
|
[45] |
陈钊,王天一,姜馨淳,等. 页岩气水平井段内多簇压裂暂堵技术的数值模拟研究及先导实验[J]. 天然气工业,2021,41(增刊1):158−163. CHEN Zhao,WANG Tianyi,JIANG Xinchun,et al. Numerical simulation study and pilot test of multi−cluster fracturing and temporary plugging technology in the horizontal hole section of shale−gas horizontal wells[J]. Natural Gas Industry,2021,41(Sup.1):158−163.
|