Citation: | LI Zhe,YANG Haiyan,YUE Jianhua,et al. Conical source transient electromagnetic response characteristics with overburden based on Occam constrained inversion[J]. Coal Geology & Exploration,2022,50(6):175−183. DOI: 10.12363/issn.1001-1986.22.01.0023 |
[1] |
牛之琏. 时间域瞬变电磁法原理[M]. 长沙: 中南大学出版社, 2007.
|
[2] |
李金铭. 地电场与电法勘探[M]. 北京: 地质出版社, 2005.
|
[3] |
张胜业, 潘玉玲. 应用地球物理学原理[M]. 武汉: 中国地质大学出版社, 2004.
|
[4] |
于景邨. 全空间瞬变电磁法在煤矿防治水中的应用[J]. 煤炭科学技术,2011,39(9):110−113. YU Jingcun. Application of full space transient electromagnetic method to mine water prevention and control[J]. Coal Science and Technology,2011,39(9):110−113.
YU Jingcun. Application of Full Space Transient Electromagnetic Method to Mine Water Prevention and Control[J]. Coal Science and Technology, 2011, 39(9): 110-113.
|
[5] |
刘志新. 矿井瞬变电磁场分布规律与应用研究[D]. 徐州: 中国矿业大学, 2007.
LIU Zhixin. Study on the distribution and application of mine transient electromagnetic field[D]. Xuzhou: China University of Mining and Technology, 2007.
|
[6] |
姜志海. 巷道掘进工作面瞬变电磁超前探测机理与技术研究[D]. 徐州: 中国矿业大学, 2008.
JIANG Zhihai. Study on the mechanism and technology of advanced detection with transient electromagnetic method for roadway drivage face[D]. Xuzhou: China University of Mining and Technology, 2008.
|
[7] |
YANG Haiyan,LI Fengping,YUE Jianhua,et al. Cone-shaped source characteristics and inductance effect of transient electromagnetic method[J]. Applied Geophysics,2017,14(1):165−174. DOI: 10.1007/s11770-017-0604-2
|
[8] |
李锋平. 瞬变电磁法圆锥型场源响应特征理论研究[D]. 南昌: 东华理工大学, 2017.
LI Fengping. Theoretical study on response characteristics of cone-shaped field source in transient electromagnetic method[D]. Nanchang: East China University of Technology, 2017.
|
[9] |
YANG Haiyan,LI Fengping,CHEN Shen’en,et al. An inversion of transient electromagnetic data from a conical source[J]. Applied Geophysics,2018,15(3/4):545−555. DOI: 10.1007/S11770-018-0691-8
|
[10] |
杨海燕,刘志新,张华,等. 圆锥型场源瞬变电磁法试验研究[J]. 煤田地质与勘探,2021,49(6):107−112. YANG Haiyan,LIU Zhixin,ZHANG Hua,et al. Experimental study on transient electromagnetic method with a conical source[J]. Coal Geology & Exploration,2021,49(6):107−112. DOI: 10.3969/j.issn.1001-1986.2021.06.013
YANG Haiyan, LIU Zhixin, ZHANG hua, et al. Experimental study on transient electromagnetic method with a conical source[J]. Coal Geology & Exploration, 2021, 49(6): 107-112. doi: 10.3969/j.issn.1001-1986.2021.06.013
|
[11] |
石显新,闫述,陈明生. 瞬变电磁勘探中的低阻层屏蔽问题[J]. 煤炭学报,2005,30(2):160−163. SHI Xianxin,YAN Shu,CHEN Mingsheng. Study on screening of conductive bed in transient electromagnetic prospecting[J]. Journal of China Coal Society,2005,30(2):160−163. DOI: 10.3321/j.issn:0253-9993.2005.02.006
SHI Xianxin, YAN Shu, CHEN Mingsheng. Study on screening of conductive bed in transient electromagnetic prospecting[J]. Journal of China Coal Society, 2005(02): 160-163. DOI: 10.3321/j.issn:0253-9993.2005.02.006
|
[12] |
侯彦威,徐亚飞. 低阻覆盖层下深部富水区的TEM探测效果[J]. 物探与化探,2013,37(4):715−719. HOU Yanwei,XU Yafei. The effect of the transient electromagnetic method in detecting deep water-rich area under low resistivity layer[J]. Physical and Geochemical Exploration,2013,37(4):715−719.
HOU Yanwei, XU Yafei. The effect of the transient electromagnetic method in detecting deep water-rich area under low resistivity layer[J]. Physical and Geochemical Exploration, 2013, 37(04): 715-719.
|
[13] |
杨海燕,徐正玉,岳建华,等. 覆盖层下三维板状体地-井瞬变电磁响应[J]. 物探与化探,2016,40(1):190−196. YANG Haiyan,XU Zhengyu,YUE Jianhua,et al. 3D inclined conductor behavior of down-hole transient electromagnetic method with overburden layer[J]. Geophysical and Geochemical Exploration,2016,40(1):190−196.
YANG Haiyan, XU Zhengyu, YUE Jianhua, et al. 3D inclined conductor behavior of down-hole transient electromagnetic method with overburden layer[J]. Geophysical and Geochemical Exploration, 2016, 40(1): 190–196.
|
[14] |
杨海燕,岳建华,徐正玉,等. 覆盖层影响下典型地-井模型瞬变电磁法正演[J]. 吉林大学学报(地球科学版),2016,46(5):1527−4537. YANG Haiyan,YUE Jianhua,XU Zhengyu,et al. Transient electromagnetic method modeling in ground-borehole model with over-burden influence[J]. Journal of Jilin University (Earth Science Edition),2016,46(5):1527−4537. DOI: 10.13278/j.cnki.jjuese.201605301
YANG Haiyan, YUE Jianhua, XU Zhengyu, et al. Transient Electromagnetic Method Modeling in Ground-Borehole Model with Over-burden Influence[J]. Journal of Jilin University( Earth Science Edition), 2016, 46(5): 1527-4537. doi: 10.13278/j.cnki. juese.201605301.
|
[15] |
COMMER M,NEWMAN G A. New advances in three-dimensional controlled-source electromagnetic inversion[J]. Geophysical Journal of the Royal Astronomical Society,2010,172(2):513−535.
|
[16] |
王学知. 低阻覆盖层隐蔽水源全空间瞬变电磁响应特征研究及应用[D]. 徐州: 中国矿业大学, 2018.
WANG Xuezhi. Study and application of full space Transient Electromagnetic response characteristics of concealed water source with low resistance coverage[D]. Xuzhou: China University of Mining and Technology, 2018.
|
[17] |
杨海燕,岳建华,李锋平. 斜阶跃电流激励下多匝小回线瞬变电磁场延时特征[J]. 地球物理学报,2019,62(9):3615−3628. YANG Haiyan,YUE Jianhua,LI Fengping. The decay characteristics of transient electromagnetic fields stimulated by ramp step current in multi-turn small coil[J]. Chinese Journal of Geophysics,2019,62(9):3615−3628.
YANG Haiyan, YUE Jianhua, LI Fengping. The decay characteristics of transient electromagnetic fields stimulated by ramp step current in multi-turn small coil[J]. Geophys, 2019, 62(09): 3615-3628.
|
[18] |
王华军. 时间域瞬变电磁法全区视电阻率的平移算法[J]. 地球物理学报,2008,51(6):1936−1942. WANG Huajun. Time domain transient electromagnetism all time apparent resistivity translation algorithm[J]. Chinese Journal of Geophysics,2008,51(6):1936−1942. DOI: 10.3321/j.issn:0001-5733.2008.06.037
WANG Huajun. Time domain transient electromagnetism all time apparent resistivity translation algorithm[J]. Geophys, 2008, (06): 1936-1942. DOI: 10.3321/j.issn:0001-5733.2008.06.037
|
[19] |
KAUFMAN A A, EATON P A. The theory of inductive prospecting[M]. Elsevier Science Limited, 2001.
|
[20] |
杨海燕,邓居智,汤洪志,等. 全空间瞬变电磁法资料解释方法中的平移算法[J]. 吉林大学学报(地球科学版),2014,44(3):1012−1017. YANG Haiyan,DENG Juzhi,TANG Hongzhi,et al. Translation algorithm of data interpretation technique in full-space transient electromagnetic method[J]. Journal of Jilin University (Earth Science Edition),2014,44(3):1012−1017. DOI: 10.13278/j.cnki.jjuese.201403302
YANG Haiyan, DENG Juzhi, TANG Hongzhi, et al. Translation Algorithm of Data Interpretation Technique in Full-Space Transient Electromagnetic Method[J]. Journal of Jjilin University(Earth Science Edition), 2014, 44(3): 1012–1017. doi: 10.13278/j.cnki.jjuese.201403302
|
[21] |
陈卫营,李海,薛国强,等. SOTEM数据一维OCCAM反演及其应用于三维模型的效果[J]. 地球物理学报,2017,60(9):3667−3676. CHEN Weiyng,LI Hai,XUE Guoqiang,et al. 1D OCCAM inversion of SOTEM data and its application to 3D models[J]. Chinese Journal of Geophysics,2017,60(9):3667−3676. DOI: 10.6038/cjg20170930
CHEN Weiyng, LI Hai, XUE Guoqiang, et al. 1D OCCAM inversion of SOTEM data and its application to 3D models. Chinese[J]. Geophys, 2017, 60(9): 3667-3676. DOI: 10.6038/cjg20170930
|
[22] |
CONSTABLE S C,PARKER R L,CONSTABLE C G. Occam’s inversion:A practical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics,1987,52(3):289−300. DOI: 10.1190/1.1442303
|
[23] |
KLITYŃSKI W,ORYŃSKI S,DINH C N. Application of the conductive method in the engineering geology:Ruczaj district in Kraków,Poland,as a case study[J]. Acta Geophysica,2019,67(6):1791−1798. DOI: 10.1007/s11600-019-00335-w
|
[24] |
TRINAKOON S,VACHIRATIANCHAI C,AMATYKUL P,et al. Comparing performance of multi-frequency bands Occam’s receiver function inversion to standard linearized receiver function inversion[J]. Journal of Physics:Conference Series,2019,1380(1):012061. DOI: 10.1088/1742-6596/1380/1/012061
|
[25] |
肖俊,叶益信,薛海军,等. 基于非结构有限元的带地形海洋可控源电磁法二维Occam反演[J]. 工程地球物理学报,2020,17(2):217−224. XIAO Jun,YE Yixin,XUE Haijun,et al. Two-dimensional Occam inversion of marine controlled-source electromagnetic method in terrain based on unstructured finite element method[J]. Chinese Journal of Engineering Geophysics,2020,17(2):217−224. DOI: 10.3969/j.issn.1672-7940.2020.02.012
XIAO Jun, YE Yixin, XUE Haijun, et al. Two-dimensional occam inversion of marine controlled-source electromagnetic method in terrain based on unstructured finite element method[J]. Chinese Journal of Engineering Geophysics, 2020, 17(02): 217-224. DOI: 10.3969/j.issn.1672-7940.2020.02.012
|
[26] |
侯彦威. TEM探测深部煤层上覆多电性层的OCCAM反演[J]. 煤田地质与勘探,2018,46(6):169−173. HOU Yanwei. OCCAM inversion for detecting overlying multiple electrical layers above deep coal seams by TEM[J]. Coal Geology & Exploration,2018,46(6):169−173. DOI: 10.3969/j.issn.1001-1986.2018.06.025
HOU Yanwei. OCCAM inversion for detecting overlying multiple electrical layers above deep coal seams by TEM[J]. Coal Geology & Exploration, 2018, 46(06): 169-173. DOI: 10.3969/j.issn.1001-1986.2018.06.025
|
[27] |
路俊涛,雷达,任浩,等. 航空瞬变电磁数据光滑拟二维反演[J]. 地球物理学进展,2021,36(4):1573−1580. LU Juntao,LEI Da,REN Hao,et al. Smooth quasi-2D inversion of airborne transient electromagnetic data[J]. Progress in Geophysics,2021,36(4):1573−1580.
LU Juntao, LEI Da, REN Hao, et al. Smooth quasi-2D inversion of airborne transient electromagnetic data[J]. Progress in Geophysics, 2021, 36(04): 1573-1580.
|
[28] |
RAICHE A P,SPIES B R. Coincident loop transient electromagnetic master curves for interpretation of two-layer earths[J]. Geophysics,1981,46(1):53−64. DOI: 10.1190/1.1441139
|
[29] |
于景邨. 矿井瞬变电磁法勘探[M]. 徐州: 中国矿业大学出版社, 2007.
|
[30] |
汤洪志. 勘查技术与工程专业教学实习指导书[M]. 南昌: 东华理工大学出版社, 2003.
|
[31] |
马王鹏. AEMT数据的采集及反演[D]. 南昌: 东华理工大学, 2018.
MA Wangpeng. AEMT data collection and inversion[D]. Nanchang: East China University of Technology, 2018.
|
[1] | WANG Wenxue, WANG Bosen, GAO Yanwei, WU Bing, NIE Tianyu. Law governing variations in water-pressure transmission rate in confined aquifers[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(3): 79-88. DOI: 10.12363/issn.1001-1986.23.09.0543 |
[2] | LIU Shiqi, FANG Huihuang, SANG Shuxun, HU Qiujia, DUAN Weiying, JIA Huimin, MAO Chonghao. Numerical simulation of gas production for multilayer drainage coalbed methane vertical wells in southern Qinshui Basin[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(6): 20-31. DOI: 10.12363/issn.1001-1986.22.01.0008 |
[3] | ZHANG Zekun, SONG Zhanping, CHENG Yun, HUO Runke, SONG Wanxue, WANG Kuisheng, WANG Tong, YANG Tengtian, LIU Wei. Acoustic emission characteristics and fracture response behavior of hard rock-like material under influence of loading rate[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(2): 115-124. DOI: 10.12363/issn.1001-1986.21.08.0418 |
[4] | LOU Yili, WU Zhonghu, WANG Anli, ZUO Yujun, LIU Hao, SUN Wenjibin. Numerical simulation of rupture process of shale under action of fluid-solid coupling[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(1): 105-112. DOI: 10.3969/j.issn.1001-1986.2020.01.014 |
[5] | CHAI Rui. Influence of mining rate on periodic weighting pace of fully mechanized coal mining face[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(4): 119-124,131. DOI: 10.3969/j.issn.1001-1986.2016.04.023 |
[6] | SUN Luanluan, WANG Zhonghua, SUN Yanqing, WANG Huajun, BAI Shuai, ZHENG Gong. Fluid-solid coupling numerical simulation of coal seam floor failure[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(3): 55-58. DOI: 10.3969/j.issn.1001-1986.2013.03.013 |
[7] | FENG Lijuan, GUO Dali, ZENG Xiaohui, ZHU Weiping, LIU Chuanqing. Experimental study on the stress sensitivity of coal and its impact on the filtration of the fracturing fluid[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(2): 14-17. DOI: 10.3969/j.issn.1001-1986.2010.02.004 |
[8] | LI Jian-zhong, XU Li-sheng. Load-rate effect and creep deformation of clay with low water content[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(1): 41-44. |
[9] | LUO Yi, XIANG Xin, WANG Yong. Technological method to measure the canal sewage discharge in coal mine[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(1): 56-58. |
[10] | Zheng Gang, Wei Jianghan. THE STUDY OF IMMEDIATE PREDICTING NONLINEAR MODEL OF MINE DISCHARGE IN WANGJIAZHAI COAL MINE[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(6): 38-40. |