WANG Baoli,CHENG Jianyuan,JIN Dan,et al.Characteristics and detection performance of the source of seismic while excavating in underground coal mines[J].Coal Geology & Exploration,2022,50(1):10−19. DOI: 10.12363/issn.1001-1986.21.11.0639
Citation: WANG Baoli,CHENG Jianyuan,JIN Dan,et al.Characteristics and detection performance of the source of seismic while excavating in underground coal mines[J].Coal Geology & Exploration,2022,50(1):10−19. DOI: 10.12363/issn.1001-1986.21.11.0639

Characteristics and detection performance of the source of seismic while excavating in underground coal mines

More Information
  • Received Date: November 09, 2021
  • Revised Date: December 07, 2021
  • Available Online: January 17, 2022
  • Published Date: January 31, 2022
  • Against a background of intelligent coal mines, seismic while excavating has become one of the key geological guarantee technologies for safe excavation in the mining face. It can detect hidden geological structures in real-time, in advance and finely, such as goafs, faults, and collapsed columns, effectively promoting safe and efficient excavation and production. Different from the widely used advanced detection technology of reflection in-seam wave, the vibration signal of the tunneling machine is used as the excitation source, which replaces the explosive source in conventional seismic exploration. It has the advantages of environmental frendliness, safety, low cost, recyclability and combined exploration and excavation. Great differences between the TBM(Tunnel Boring Machine) source and the explosive source in excitation mode, energy, frequency and bandwidth cause much attention to the former’s detection performance. By studying the focal mechanism, wave field characteristics, propagation distance and imaging accuracy of the seismic-while-excavating, its detection performance is analyzed in detail. It is considered that the in-seam wave and shear wave in the wave field of the seismic caused by excavation is sufficient, and can be used for advanced detection. The Y component has the advantage of better signal-to-noise ratio, but with the trend of reflection surface being considered in practical application; the Z component has more advantages with the same amount of equipment. The direct S-wave propagation distance of seismic-while-excavating can reach more than 700 meters, and the advance detection distance of S-wave 300 meters. The propagation distance of direct in-seam wave of seismic-while-excavating can exceed 400 meters, and the advance detection distance of in-seam wave 170 meters. At a normal excavating speed, the reflected waves can be superposed for 16 times. Compared with a conventional detection, the signal-to-noise ratio can be increased by 4 times, which effectively improves the detection accuracy. The performance parameters of the seismic-while-excavating technology will be further modified through a large number of application data.
  • [1]
    夏宇靖,杨体仁,杨战宁. 独头巷道超前勘探的有效手段: 瑞雷波勘探技术井下超前勘探试验结果述评[J]. 煤田地质与勘探,1992,20(5):50−52.

    XIA Yujing,YANG Tiren,YANG Zhanning. An efficient means for advance exploration in dead ends: A review of results of Rayleigh wave prospecting test for advance exploration in underground coal mines[J]. Coal Geology & Exploration,1992,20(5):50−52.
    [2]
    王季,覃思,吴海,等. 随掘地震实时超前探测系统的试验研究[J]. 煤田地质与勘探,2021,49(4):1−7. DOI: 10.3969/j.issn.1001-1986.2021.04.001

    WANG Ji,QIN Si,WU Hai,et al. Experimental study on advanced real time detection system of seismic−while−excavating[J]. Coal Geology & Exploration,2021,49(4):1−7. DOI: 10.3969/j.issn.1001-1986.2021.04.001
    [3]
    姬广忠.煤巷侧帮反射槽波成像方法及应用研究[D].北京: 煤炭科学研究总院, 2017.

    JI Guangzhong.Research on imaging methods and application of reflected in−seam wave at the roadway lateral wall of coal seam[D].Beijing: China Coal Research Institute, 2017.
    [4]
    姬广忠. 反射槽波绕射偏移成像及应用[J]. 煤田地质与勘探,2017,45(1):121−124. DOI: 10.3969/j.issn.1001-1986.2017.01.024

    JI Guangzhong. Diffraction migration imaging of reflected in−seam waves and its application[J]. Coal Geology & Exploration,2017,45(1):121−124. DOI: 10.3969/j.issn.1001-1986.2017.01.024
    [5]
    王鹏,鲁晶津,王信文. 再论巷道直流电法超前探测技术的有效性[J]. 煤炭科学技术,2020,48(12):257−263.

    WANG Peng,LU Jingjin,WANG Xinwen. Restudy on effectivity of direct current advance detection method in roadway[J]. Coal Science and Technology,2020,48(12):257−263.
    [6]
    程久龙,赵家宏,董毅,等. 基于LBA–BP的矿井瞬变电磁法岩层富水性的定量预测研究[J]. 煤炭学报,2020,45(1):330−337.

    CHENG Jiulong,ZHAO Jiahong,DONG Yi,et al. Quantitative prediction of water abundance in rock mass by transient electro−magnetic method with LBA−BP neural network[J]. Journal of China Coal Society,2020,45(1):330−337.
    [7]
    TAYLOR N, MERRIAM J, GENDZWILL D, et al.The mining machine as a seismic source for in seam reflection mapping[C]//SEG Technical Program Expanded Abstracts, 2001: 1365–1368.
    [8]
    胡应曦. 悬臂掘进机截割头功率和运动参数的分析[J]. 煤矿机械,1983(3):9−16.

    HU Yingxi. Analysis of cutting head power and motion parameters of cantilever roadheader[J]. Coal Mine Machinery,1983(3):9−16.
    [9]
    刘欢,费小雪,贾吉喆,等. 随掘地震震源特征研究[J]. 能源技术与管理,2015,40(1):17−19. DOI: 10.3969/j.issn.1672-9943.2015.01.006

    LIU Huan,FEI Xiaoxue,JIA Jizhe,et al. Study on focal characteristics of digging earthquake[J]. Energy Technology and Management,2015,40(1):17−19. DOI: 10.3969/j.issn.1672-9943.2015.01.006
    [10]
    刘强. L1范数约束的随掘地震噪声衰减[J]. 煤炭学报,2021,46(8):2699−2705.

    LIU Qiang. Noise attenuation based on L1−norm constraint inversion in seismic while drilling[J]. Journal of China Coal Society,2021,46(8):2699−2705.
    [11]
    覃思.煤矿井下随采地震技术的试验研究[D].北京: 煤炭科学研究总院, 2015.

    QIN Si.Experimental study of seismic while mining in underground coal mines[D].Beijing: China Coal Research Institute, 2015.
    [12]
    李亚豪,程久龙,姜旭,等. 基于互相关的随掘地震超前探测有效信号提取方法研究[J]. 中国矿业,2020,29(5):82−85.

    LI Yahao,CHENG Jiulong,JIANG Xu,et al. Research on effective signals extraction method of seismic while drilling ahead detection based on cross–correlation[J]. China Mining Magazine,2020,29(5):82−85.
    [13]
    李圣林, 张平松, 姬广忠, 等.随掘地震超前探测掘进机震源信号的复合干涉处理研究[J/OL].采矿与安全工程学报: 1–14 [2021–11–09].https://doi.org/10.13545/j.cnki.jmse.2021.0164.

    LI Shenglin, ZHANG Pingsong, JI Guangzhong, et al.Research on compound interference processing of roadheader source signal for advanced seismic detection while drifting[J].Journal of Mining and Safety Engineering: 1–14 [2021–11–09].https://doi.org/10.13545/j.cnki.jmse.2021.0164.
    [14]
    黄民,吴淼,安伟,等. 横切割头掘进机械振动测试及模态分析[J]. 中国矿业大学学报,1997,26(2):15−19.

    HUANG Min,WU Miao,AN Wei,et al. Vibration measurement and modal analysis for horizontal axis tunneller[J]. Journal of China University of Mining & Technology,1997,26(2):15−19.
  • Related Articles

    [1]ZHANG Sheng, CHEN Zhao, LU Song, YANG Zhanbiao, JI Panjun, HE Fei, LU Yiqiang, LIU Jiawei. Application of the horizontal seismic profiling-based advance detection technology to the excavation of rock roadways in coal mines using tunnel boring machines[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(3): 107-117. DOI: 10.12363/issn.1001-1986.23.07.0451
    [2]ZHANG Sheng, CHEN Zhao, LU Song, YANG Zhanbiao, JI Panjun, HE Fei, LU Yiqiang, LIU Jiawei. Application of the horizontal seismic profiling-based advance detection technology to the excavation of rock roadways in coal mines using tunnel boring machines[J]. COAL GEOLOGY & EXPLORATION.
    [3]WU Rongxin, XU Hui. Multipoint sources-based high-resolution electrical detection of the water-rich areas near mining faces of coal mine roadways[J]. COAL GEOLOGY & EXPLORATION.
    [4]YUAN Liang, ZHANG Pingsong. Research progress and thinking on integrated tunneling and detection technology of rock roadway with TBM[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(1): 21-32. DOI: 10.12363/issn.1001-1986.22.12.0967
    [5]ZHANG Youzhen, FAN Tao, KAN Zhitao, WEI Hongchao, CHEN Hongyan. Application and development of advanced drilling technology for coal mine roadway heading[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 286-293. DOI: 10.3969/j.issn.1001-1986.2021.05.033
    [6]WANG Ji, QIN Si, WU Hai, ZHANG Qingqing, YU Junhui, SU Xiaoyun. Experimental study on advanced real time detection system of seismic-while-excavating[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 1-7. DOI: 10.3969/j.issn.1001-1986.2021.04.001
    [7]LIU Wenming, CHENG Jianyuan, LIU Zaibin, ZHANG Zeyu. Experimental study on dynamic prediction of coal seam floor elevation in heading face[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(1): 257-262. DOI: 10.3969/j.issn.1001-1986.2021.01.028
    [8]JIN Dan. Simulation of seismic-while-mining with shearer as source of fully mechanized mining face[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 15-19,24. DOI: 10.3969/j.issn.1001-1986.2019.03.003
    [9]LU Bin. Method of transparent working face based on dynamic detection of cross hole seismic subdivision[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 10-14. DOI: 10.3969/j.issn.1001-1986.2019.03.002
    [10]CHENG Jianyuan, QIN Si, LU Bin, WANG Baoli, WANG Ji, WANG Yunhong. The development of seismic-while-mining detection technology in underground coal mines[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 1-9. DOI: 10.3969/j.issn.1001-1986.2019.03.001
  • Cited by

    Periodical cited type(11)

    1. 齐消寒,刘阳,杨雪松,朱同光,王品,侯双荣. 不同预制温度煤岩冻融损伤及渗流特性研究. 矿业科学学报. 2023(04): 474-486 .
    2. 薛守宁,何志强,李聪,余波,路雪莲,刘文玥,杨建平,魏子杰. 深部岩石原位保温取心保温材料物理力学特性研究. 煤田地质与勘探. 2023(08): 30-38 . 本站查看
    3. 徐刚,彭来栋,金洪伟. 含水煤体蠕变损伤特性及本构模型研究. 矿业研究与开发. 2023(09): 152-157 .
    4. 孔彪,钟建辉,陆伟,胡相明,辛林,张斌,张晓龙,庄则栋. 煤升温过程中声发射信号变化及产生机制研究. 煤炭科学技术. 2023(S2): 84-91 .
    5. 张慧梅,袁超,慕娜娜,张婵,路亚妮. 冻融岩石CT图像处理及细观特征分析. 西安科技大学学报. 2022(02): 219-226 .
    6. 金梦华,冯海燕,杨有贞,樊怡,马文国,赵诣深. 贺兰山岩画典型病害损伤的声发射演化特征研究. 宁夏大学学报(自然科学版). 2022(02): 177-183 .
    7. 徐遵玉. 松散煤体声发射特征与损伤本构模型. 煤炭工程. 2022(09): 112-116 .
    8. 牛睿. 岩石破坏声发射前兆研究现状及评价指标体系构建. 电声技术. 2022(12): 46-49+63 .
    9. 葛振龙,孙强,王苗苗,赵春虎. 基于RA/AF的高温后砂岩破裂特征识别研究. 煤田地质与勘探. 2021(02): 176-183 . 本站查看
    10. 段会强. 煤样分级加载蠕变破坏试验研究. 煤矿安全. 2021(07): 54-60 .
    11. 刘朝科,任建喜. 巷道底板砂岩三轴压缩蠕变试验与分数阶模型. 西安科技大学学报. 2020(06): 1003-1009 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (684) PDF downloads (130) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return