Prediction of the height of water flowing fractured zone under subcritical mining based on dimensional analysis
-
摘要: 为准确预测非充分采动导水裂缝带高度,选取开采厚度M、煤层埋深H、工作面倾斜长度L、煤层倾角α、覆岩力学性质R、覆岩结构特征S为非充分采动导水裂缝带高度主要影响因素。采用量纲分析建立了导水裂缝带高度与M,H,L,α,S间的无量纲关系式。结合30组实测数据,采用多元回归得到无量纲关系式的最优函数关系式。选取2个非充分采动工作面导水裂缝带现场实例对预测模型进行了工程验证,预测模型预测结果与实测结果吻合良好,其相对误差分别为3.64%和2.93%,预测模型的预测精度可以满足煤矿安全生产现场需要。Abstract: In order to accurately predict the height of water flowing fractured zone under subcritical mining, mining thickness M, mining depth H, inclined length of working face L, dip angle of coal seam α, overburden mechanical properties R, overburden structure characteristics S were selected as the main influencing factors on the height of water flowing fractured zone under subcritical mining. Dimensionless relations between the height of water flowing fractured zone and M, H, L, α, S were established by dimensional analysis. Based on 30 sets of measured data, the optimal function relation of dimensionless relation was obtained by multiple regression. The prediction model is validated with field examples from two subcritical working faces, the prediction values are in good agreement with the measured values, and the relative errors are 3.64% and 2.93% respectively, the prediction accuracy of the prediction model can meet the field requirements of safe production in coal mine.
-
-
[1] 郭文兵,谭志祥,柴华彬,等. 煤矿开采损害与保护[M]. 北京:煤炭工业出版社,2013:7-37. [2] 郭增长,韩六合,邓智毅,等. 极不充分开采地表移动和变形特征[J]. 矿山测量,2002(2):55-57. GUO Zengzhang,HAN Liuhe,DENG Zhiyi,et al. Surface movement and deformation characteristics under super-subcritical mining[J]. Mine Surveying,2002(2):55-57.
[3] 施龙青,辛恒奇,翟培合,等. 大采深条件下导水裂隙带高度计算研究[J]. 中国矿业大学学报,2012,41(1):37-41. SHI Longqing,XIN Hengqi,ZHAI Peihe,et al. Calculating the height of water flowing fracture zone in deep mining[J]. Journal of China University of Mining & Technology,2012,47(1):37-41.
[4] 谭毅,郭文兵,杨达明,等. 非充分采动下浅埋坚硬顶板"两带"高度分析[J]. 采矿与安全工程学报,2017,34(5):845-851. TAN Yi,GUO Wenbing,YANG Daming,et al. Analysis on height of "two zones" under subcritical mining in shallow coal seam with hard roof[J]. Journal of Mining & Safety Engineering,2017,34(5):845-851.
[5] 李超峰,虎维岳,王云宏,等. 煤层顶板导水裂缝带高度综合探查技术[J]. 煤田地质与勘探,2018,46(1):101-107. LI Chaofeng,HU Weiyue,WANG Yunhong,et al. Comprehensive detection technique for coal seam roof water flowing fractured zone height[J]. Coal Geology & Exploration,2018,46(1):101-107.
[6] 冯洁,王苏健,陈通,等. 生态脆弱矿区土层中导水裂缝带发育高度研究[J]. 煤田地质与勘探,2018,46(1):97-100. FENG Jie,WANG Sujian,CHEN Tong,et al. Height of water flowing fractured zone of soil layer in the ecologically fragile mining area[J]. Coal Geology & Exploration,2018,46(1):97-100.
[7] 国家安全监管总局、国家煤矿安监局、国家能源局、国家铁路局. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M]. 北京:煤炭工业出版社,2017:55-56. [8] 孙亚军,徐智敏,董青红. 小浪底水库下采煤导水裂隙发育监测与模拟研究[J]. 岩石力学与工程学报,2009,28(2):238-245. SUN Yajun,XU Zhimin,DONG Qinghong. Monitoring and simulation research on development of water flowing fractures for coal mining under xiaolangdi reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):238-245.
[9] 尹尚先,徐斌,徐慧,等. 综采条件下煤层顶板导水裂缝带高度计算研究[J]. 煤炭科学技术,2013,41(9):138-142. YIN Shangxian,XU Bin,XU Hui,et al. Study on height calculation of water conducted fractured zone caused by fully mechanized mining[J]. Coal Science and Technology,2013,41(9):138-142.
[10] 马志伟,叶义成,王其虎,等. 含钒页岩矿床开采导水裂隙带发育高度研究[J]. 金属矿山,2013(4):142-146. MA Zhiwei,YE Yicheng,WANG Qihu,et al. Study on height of water flowing fractured zone in containing vanadium shale deposit[J]. Metal Mine,2013(4):142-146.
[11] 张宝安,李佳音,卢洋,等. 采空区覆岩导水裂隙带高度预计方法对比分析[J]. 中国地质灾害与防治学报,2016,27(2):132-136. ZHANG Baoan,LI Jiayin,LU Yang,et al. Comparison and analysis of the prediction method of water flowing fractured zone height[J]. The Chinese Journal of Geological Hazard and Control,2016,27(2):132-136.
[12] 胡小娟,李文平,曹丁涛,等. 综采导水裂隙带多因素影响指标研究与高度预计[J]. 煤炭学报,2012,37(4):613-620. HU Xiaojuan,LI Wenping,CAO Dingtao,et al. Index of multiple factors and expected height of fully mechanized water flowing fractured zone[J]. Journal of China Coal Society,2012,37(4):613-620.
[13] 李培现,谭志祥,顾伟,等. 基于FLAC的导水断裂带分布规律模拟研究[J]. 煤炭科学技术,2015,43(4):31-34. LI Peixian,TAN Zhixiang,GU Wei,et al. Simulation study on distribution law of water flow crack zone based on FLAC[J]. Coal Science and Technology,2015,43(4):31-34.
[14] 康永华,申宝宏. 水体下采煤宏观分类与发展战略[M]. 北京:煤炭工业出版社,2017:177-184. [15] 李振华,许延春,李龙飞,等. 基于BP神经网络的导水裂隙带高度预测[J]. 采矿与安全工程学报,2015,32(6):905-910. LI Zhenhua,XU Yanchun,LI Longfei,et al. Forecast of the height of water flowing fractured zone based on BP neural networks[J]. Journal of Mining & Safety Engineering,2015,32(6):905-910.
[16] 黄欢,姬亚东. 运用偏最小二乘回归法计算导水裂缝带高度[J]. 矿业安全与环保,2017,44(1):40-44. HUANG Huan,JI Yadong. Application of partial least squares regression for calculating height of water flowing fractured zone[J]. Mining Safety & Environmental Protection,2017,44(1):40-44.
[17] 赵高博,郭文兵,杨达明,等. 综放开采覆岩破坏模型及导水裂隙带高度研究[J]. 中国安全科学学报,2017,27(11):144-149. ZHAO Gaobo,GUO Wenbing,YANG Daming,et al. Study on overburden failure models and height of water flowing fractured zone in fully mechanized caving mining[J]. China Safety Science Journal,2017,27(11):144-149.
[18] 赵国彦,梁伟章,王少锋,等. 基于量纲分析的巷道围岩松动圈预测模型[J]. 岩土力学,2016,37(增刊2):273-278. ZHAO Guoyan,LIANG Weizhang,WANG Shaofeng,et al. Prediction model for extent of excavation damaged zone around roadway based on dimensional analysis[J]. Rock and Soil Mechanics,2016,37(S2):273-278.
[19] 岳哲,叶义成,王其虎,等. 基于量纲分析的岩石相似材料抗压强度计算模型[J]. 岩土力学,2018,39(1):216-221. YUE Zhe,YE Yicheng,WANG Qihu,et al. A model for calculation of compressive strength of rock-like materials based on dimensional analysis[J]. Rock and Soil Mechanics,2018,39(1):216-221.
[20] 胡炳南,张华兴,申宝宏. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采指南[M]. 北京:煤炭工业出版社,2017:172-180. [21] 王正帅,邓喀中,谭志祥. 导水裂缝带高度预测的模糊支持向量机模型[J]. 地下空间与工程学报,2011,7(4):723-727. WANG Zhengshuai,DENG Kazhong,TAN Zhixiang. Height prediction of water fractured zone based on fuzzy SVM[J]. Chinese Journal of Underground Space and Engineering,2011,7(4):723-727.
[22] 黄福昌,倪兴华,张怀新,等. 厚煤层综放开采沉陷控制与治理技术[M]. 徐州:中国矿业大学出版社,2007:119-120. [23] 刘谊,朱林,金吕锋. 新集矿区推覆体水文工程地质条件研究和水害防治实践[M]. 徐州:中国矿业大学出版社,2008:50-65. -
期刊类型引用(13)
1. 刘江斌,张仲杰,高广昌,闫伟涛,景巨栋,李洋,马子韬,陈俊杰. 西部高强度开采矿区覆岩破坏发育高度分析. 中国矿业. 2024(11): 121-129 . 百度学术
2. 冯义,任凯,王茜. 牛东火山岩油藏自喷井嘴流公式的研究与应用. 石油地质与工程. 2023(01): 100-102 . 百度学术
3. 李全生,李晓斌,许家林,徐祝贺,张村. 岩层采动裂隙演化规律与生态治理技术研究进展. 煤炭科学技术. 2022(01): 28-47 . 百度学术
4. 赵德星. 基于Elman神经网络的导水裂隙带高度预测模型. 山西煤炭. 2022(02): 8-14 . 百度学术
5. 吕振虎,外力·阿不力米提,邬国栋,董景锋,张凤娟,郑苗. 化学胶塞在控制压裂裂缝高度中的探索与应用. 钻采工艺. 2022(05): 144-149 . 百度学术
6. 李超峰. 黄陇煤田综放采煤导水裂隙带高度经验公式. 煤炭技术. 2021(06): 119-122 . 百度学术
7. 娄高中,谭毅. 基于PSO-BP神经网络的导水裂隙带高度预测. 煤田地质与勘探. 2021(04): 198-204 . 本站查看
8. 曹始友,成文举,张历峰,徐德宝,王松,陈大林,王鹏,尹会永. 基于主成分回归分析法的导水裂缝带高度预测. 中国矿业. 2021(10): 114-121 . 百度学术
9. 王晓琪. 基于量纲分析的岩质边坡稳定性分析模型. 陕西水利. 2021(10): 183-185 . 百度学术
10. 王君,朱卫兵,谢建林. 特厚煤层充分采动覆岩下沉规律研究. 工矿自动化. 2021(10): 21-26 . 百度学术
11. 宋永,覃觅觅. 电磁精细探测法在隐伏型导水地质裂缝勘探中的应用. 水利水电技术. 2020(02): 184-191 . 百度学术
12. 张玉军,张志巍. 煤层采动覆岩破坏规律与控制技术研究进展. 煤炭科学技术. 2020(11): 85-97 . 百度学术
13. 李波,方夏. 巨厚煤层放顶煤一次采全高导水裂缝带发育高度研究. 华北国土资源. 2019(05): 103-105 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 204
- HTML全文浏览量: 66
- PDF下载量: 11
- 被引次数: 14