留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

坚硬顶板强矿压动力灾害演化机理与超前区域防治技术

郑凯歌 王林涛 李彬刚 李延军 杨欢 杨森 戴楠 王豪杰 王泽阳 席杰

郑凯歌,王林涛,李彬刚,等. 坚硬顶板强矿压动力灾害演化机理与超前区域防治技术[J]. 煤田地质与勘探,2022,50(8):62−71. doi: 10.12363/issn.1001-1986.22.04.0222
引用本文: 郑凯歌,王林涛,李彬刚,等. 坚硬顶板强矿压动力灾害演化机理与超前区域防治技术[J]. 煤田地质与勘探,2022,50(8):62−71. doi: 10.12363/issn.1001-1986.22.04.0222
ZHENG Kaige,WANG Lintao,LI Bingang,et al. Dynamic disaster evolution mechanism of high mine pressure at hard roof and advance area prevention and control technology[J]. Coal Geology & Exploration,2022,50(8):62−71. doi: 10.12363/issn.1001-1986.22.04.0222
Citation: ZHENG Kaige,WANG Lintao,LI Bingang,et al. Dynamic disaster evolution mechanism of high mine pressure at hard roof and advance area prevention and control technology[J]. Coal Geology & Exploration,2022,50(8):62−71. doi: 10.12363/issn.1001-1986.22.04.0222

坚硬顶板强矿压动力灾害演化机理与超前区域防治技术

doi: 10.12363/issn.1001-1986.22.04.0222
基金项目: 中煤科工集团西安研究院有限公司科技创新基金项目(2019XAYZD09)
详细信息
    第一作者:

    郑凯歌,1988年生,男,河南周口人,博士研究生,副研究员,从事矿压与瓦斯动力灾害防治方面的研究工作.E-mail:13655617009@163.com

  • 中图分类号: TD324

Dynamic disaster evolution mechanism of high mine pressure at hard roof and advance area prevention and control technology

  • 摘要: 工作面上覆坚硬顶板往往不易垮落,破断后易形成动压灾害。以神东矿区布尔台煤矿为背景,针对典型坚硬顶板造成的强矿压动力灾害问题,采用数值模拟、理论分析的方法分析并揭示坚硬顶板弱化前后的应力演化特征及顶板破断机理,提出超前区域防治技术并应用于现场实践。结果表明:坚硬顶板破断演化特征分为3个阶段,即“长悬臂梁”阶段—“砌体梁滑落失稳”阶段—重新压实阶段,其中“长悬臂梁”阶段支架上方顶板应力显著增大至6.8 MPa,破断前支架上方顶板应力为破断后的2倍,其临界破断产生的应力释放是引起强矿压的根本原因,这也是弱化改造控制的主要阶段。基于坚硬顶板灾害发生机理,提出“广域大空间”超前区域防治技术,阐述了绿色、精准、广域的防治优势,以及钻孔轨迹控制、封孔质量控制、多孔联动效应的关键技术及治理评价体系。结合数值模拟进一步验证防治技术的可靠性,当“长悬臂梁”结构弱化后,其破断前支架上方顶板应力为4.6 MPa,降幅32.4%,顶板破断演化特征3个阶段演变为来压前阶段—“砌体梁滑落失稳”阶段—重新压实阶段,弱化后顶板各阶段支架上方顶板应力降幅达到32.4%~79.4%,表明预成裂隙弱面和降低坚硬层完整性能够有效改变顶板破断结构,显著降低来压强度。实践表明:压裂过程产生多次压降,降幅均达到3 MPa以上,探测裂缝发育长度达到30 m以上,压裂前后工作面周期来压步距降幅44.9%,支架来压载荷降幅18.1%,治理效果良好。研究结果可为类似矿区动力灾害治理提供借鉴。

     

  • 图  试验区坚硬顶板钻孔柱状分布特征

    Fig. 1  Column distribution characteristics of hard roof drilling in the test area

    图  模型建立及节理划分

    Fig. 2  Model establishment and joint division

    图  弱化前工作面顶板破断特征及应力分布

    Fig. 3  Roof fracture characteristics and stress distribution of working face before weakening

    图  弱化前顶板破断机理演化

    Fig. 4  Evolution diagram of roof breakage mechanism before weakening

    图  超前分段区域防治与传统技术优势对比

    Fig. 5  Comparative study of prevention and control advantages in advanced sublevel regions

    图  超前分段区域防治技术

    Fig. 6  Prevention principle of advanced sectional area

    图  超前分段效果评价

    Fig. 7  Effect evaluation of advanced segmentation

    图  弱化后工作面顶板破断特征及应力分布

    Fig. 8  Roof fracture characteristics and stress distribution of working face after weakening

    图  弱化后顶板破断机理演化示意

    Fig. 9  Evolution diagram of roof breakage mechanism after weakening

    图  10  工作面超前弱化空间布置

    Fig. 10  Advanced weakening space layout of working face

    图  11  压裂数据变化特征

    Fig. 11  Variation characteristics of fracturing data

    图  12  压裂后区域瞬变电磁探测分布特征

    Fig. 12  Distribution characteristics of transient electromagnetic detection before and after fracturing

    图  13  压裂区域支架载荷分布特征

    Fig. 13  Distribution characteristics of support resistance before and after fracturing

    表  1  研究区煤岩物理力学参数

    Table  1  Physical and mechanical parameters of coal rocks in the study area

    层位岩性厚度/m抗压强度/MPa密度(kg·m−3)泊松比内摩擦角/(°)
    底板砂质泥岩4.8481.6023.900.2526.60
    4−25.9624.0015.000.2028.20
    基本顶粉砂岩20.67101.7024.100.2524.70
    间隔层砂质泥岩14.5181.6023.900.2526.60
    下载: 导出CSV

    表  2  压裂前后区域矿压显现特征对比

    Table  2  Comparison of regional ore pressure characteristics before and after fracturing

    对比区域来压步距/m来压周期/次来压时支架载荷/MPa
    未压裂区域
    9.6157.9
    18.4257.4
    16.0357.3
    18.4457.6
    均值15.6均值57.6
    压裂区域
    8.0149.2
    6.4246.4
    8.0347.7
    11.2445.2
    9.6544.4
    7.2651.9
    6.4747.4
    均值8.6均值47.2
    下载: 导出CSV
  • [1] 康红普, 张镇, 黄志增. 我国煤矿顶板灾害的特点及防控技术[J]. 煤矿安全, 2020, 51(10): 24–33.. doi: 10.13347/j.cnki.mkaq.2020.10.005

    KANG Hongpu, ZHANG Zhen, HUANG Zhizeng. Characteristics of roof disasters and controlling techniques of coal mine in China[J]. Safety in Coal Mines, 2020, 51(10): 24–33.. doi: 10.13347/j.cnki.mkaq.2020.10.005
    [2] 于斌. 大同矿区侏罗系煤层群开采冲击地压防治技术[J]. 煤炭科学技术, 2013, 41(9): 62–65.. doi: 10.13199/j.cnki.cst.2013.09.016

    YU Bin. Prevention and control technology of pressure bump in Jurassic system seams group in Datong mining area[J]. Coal Science and Technology, 2013, 41(9): 62–65.. doi: 10.13199/j.cnki.cst.2013.09.016
    [3] 杜涛涛, 李国营, 陈建强, 等. 新疆地区冲击地压发生及防治现状[J]. 煤矿开采, 2018, 23(2): 5–10.. doi: 10.13532/j.cnki.cn11-3677/td.2018.02.002

    DU Taotao, LI Guoying, CHEN Jianqiang, et al. Rock burst occurrence and prevention status in Xinjiang region[J]. Coal Mining Technology, 2018, 23(2): 5–10.. doi: 10.13532/j.cnki.cn11-3677/td.2018.02.002
    [4] 朱德仁, 钱鸣高, 徐林生. 坚硬顶板来压控制的探讨[J]. 煤炭学报, 1991, 16(2): 11–20.. doi: 10.13225/j.cnki.jccs.1991.02.003

    ZHU Deren, QIAN Minggao, XU Linsheng. Discussion on control of hard roof weighting[J]. Journal of China Coal Society, 1991, 16(2): 11–20.. doi: 10.13225/j.cnki.jccs.1991.02.003
    [5] 李新华, 张向东. 浅埋煤层坚硬直接顶破断诱发冲击地压机理及防治[J]. 煤炭学报, 2017, 42(2): 510–517.. doi: 10.13225/j.cnki.jccs.2016.0967

    LI Xinhua, ZHANG Xiangdong. Mechanism and prevention of rock–burst induced by immediate roof breakage in shallow–buried coal seam[J]. Journal of China Coal Society, 2017, 42(2): 510–517.. doi: 10.13225/j.cnki.jccs.2016.0967
    [6] 徐刚, 于健浩, 范志忠, 等. 国内典型顶板条件工作面矿压显现规律[J]. 煤炭学报, 2021, 46(增刊1): 25–37.. doi: 10.13225/j.cnki.jccs.2020.1678

    XU Gang, YU Jianhao, FAN Zhizhong, et al. Characteristics of strata pressure behavior of working face under typical roof conditions in China[J]. Journal of China Coal Society, 2021, 46(Sup. 1): 25–37.. doi: 10.13225/j.cnki.jccs.2020.1678
    [7] 于斌, 刘长友, 杨敬轩, 等. 坚硬厚层顶板的破断失稳及其控制研究[J]. 中国矿业大学学报, 2013, 42(3): 342–348.. doi: 10.13247/j.cnki.jcumt.2013.03.003

    YU Bin, LIU Changyou, YANG Jingxuan, et al. Research on the fracture instability and its control technique of hard and thick roof[J]. Journal of China University of Mining & Technology, 2013, 42(3): 342–348.. doi: 10.13247/j.cnki.jcumt.2013.03.003
    [8] 王开, 康天合, 李海涛, 等. 坚硬顶板控制放顶方式及合理悬顶长度的研究[J]. 岩石力学与工程学报, 2009, 28(11): 2320–2327.. doi: 10.3321/j.issn:1000-6915.2009.11.022

    WANG Kai, KANG Tianhe, LI Haitao, et al. Study of control caving methods and reasonable hanging roof length on hard roof[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(11): 2320–2327.. doi: 10.3321/j.issn:1000-6915.2009.11.022
    [9] 刘长友, 杨敬轩, 于斌, 等. 覆岩多层坚硬顶板条件下特厚煤层综放工作面支架阻力确定[J]. 采矿与安全工程学报, 2015, 32(1): 7–13.. doi: 10.13545/j.cnki.jmse.2015.01.002

    LIU Changyou, YANG Jingxuan, YU Bin, et al. Support resistance determination of fully mechanized top–coal caving face in extra thick seam under multi–layered hard strata[J]. Journal of Mining & Safety Engineering, 2015, 32(1): 7–13.. doi: 10.13545/j.cnki.jmse.2015.01.002
    [10] 杨敬轩, 刘长友, 于斌, 等. 坚硬厚层顶板群结构破断的采场冲击效应[J]. 中国矿业大学学报, 2014, 43(1): 8–15.. doi: 10.13247/j.cnki.jcumt.000008

    YANG Jingxuan, LIU Changyou, YU Bin, et al. Impact effect caused by the fracture of thick and hard roof structures in a longwall face[J]. Journal of China University of Mining & Technology, 2014, 43(1): 8–15.. doi: 10.13247/j.cnki.jcumt.000008
    [11] 夏彬伟, 李晓龙, 卢义玉, 等. 大同矿区坚硬顶板破断步距及变形规律研究[J]. 采矿与安全工程学报, 2016, 33(6): 1038–1044.. doi: 10.13545/j.cnki.jmse.2016.06.012

    XIA Binwei, LI Xiaolong, LU Yiyu, et al. Study on the breaking span and deformation of hard roof in Datong mining area[J]. Journal of Mining & Safety Engineering, 2016, 33(6): 1038–1044.. doi: 10.13545/j.cnki.jmse.2016.06.012
    [12] 宋高峰, 王振伟, 钟晓勇. 坚硬顶板破断冲击机理及支架与围岩“收敛–约束”耦合机制研究[J]. 采矿与安全工程学报, 2020, 37(5): 951–959.

    SONG Gaofeng, WANG Zhenwei, ZHONG Xiaoyong. Dynamic impact mechanism of hard roof strata and coupling mechanism of “constrain–convergence”between support and surrounding rock[J]. Journal of Mining & Safety Engineering, 2020, 37(5): 951–959.
    [13] 冯彦军, 康红普. 定向水力压裂控制煤矿坚硬难垮顶板试验[J]. 岩石力学与工程学报, 2012, 31(6): 1148–1155.. doi: 10.3969/j.issn.1000-6915.2012.06.008

    FENG Yanjun, KANG Hongpu. Test on hard and stable roof control by means of directional hydraulic fracturing in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1148–1155.. doi: 10.3969/j.issn.1000-6915.2012.06.008
    [14] 何江, 窦林名, 巩思园, 等. 倾斜薄煤层切顶巷预裂顶板防治冲击矿压技术研究[J]. 煤炭学报, 2015, 40(6): 1347–1352.. doi: 10.13225/j.cnki.jccs.2015.3051

    HE Jiang, DOU Linming, GONG Siyuan, et al. Research on rock burst prevention technology of roof–cutting roadway in inclined thin coal seam[J]. Journal of China Coal Society, 2015, 40(6): 1347–1352.. doi: 10.13225/j.cnki.jccs.2015.3051
    [15] 张自政, 柏建彪, 陈勇, 等. 浅孔爆破机制及其在厚层坚硬顶板沿空留巷中的应用[J]. 岩石力学与工程学报, 2016, 35(增刊1): 3008–3017.. doi: 10.13722/j.cnki.jrme.2014.1442

    ZHANG Zizheng, BAI Jianbiao, CHEN Yong, et al. Shallow–hole blasting mechanism and its application for gob–side entry retaining with thick and hard roof[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Sup. 1): 3008–3017.. doi: 10.13722/j.cnki.jrme.2014.1442
    [16] 黄炳香, 赵兴龙, 陈树亮, 等. 坚硬顶板水压致裂控制理论与成套技术[J]. 岩石力学与工程学报, 2017, 36(12): 2954–2970.. doi: 10.13722/j.cnki.jrme.2017.0078

    HUANG Bingxiang, ZHAO Xinglong, CHEN Shuliang, et al. Theory and technology of controlling hard roof with hydraulic fracturing in underground mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2954–2970.. doi: 10.13722/j.cnki.jrme.2017.0078
    [17] 郑凯歌, 杨俊哲, 李彬刚, 等. 基于垮落充填的坚硬顶板分段压裂弱化解危技术[J]. 煤田地质与勘探, 2021, 49(5): 77–87.

    ZHENG Kaige, YANG Junzhe, LI Bingang, et al. Collapse filling–based technology of weakening and danger–solving by staged fracturing in hard roof[J]. Coal Geology & Exploration, 2021, 49(5): 77–87.
    [18] 郑凯歌. 碎软低透煤层底板梳状长钻孔分段水力压裂增透技术研究[J]. 采矿与安全工程学报, 2020, 37(2): 272–281.. doi: 10.13545/j.cnki.jmse.2020.02.007

    ZHENG Kaige. Permeability improving technology by sectional hydraulic fracturing for comb–like long drilling in floor of crushed and soft coal seam with low permeability[J]. Journal of Mining & Safety Engineering, 2020, 37(2): 272–281.. doi: 10.13545/j.cnki.jmse.2020.02.007
    [19] 杨俊哲, 郑凯歌, 赵继展, 等. 浅埋近距离上覆遗留煤柱应力集中灾害压裂治理技术研究[J]. 矿业安全与环保, 2020, 47(4): 82–87.. doi: 10.19835/j.issn.1008-4495.2020.04.016

    YANG Junzhe, ZHENG Kaige, ZHAO Jizhan, et al. Research on fracturing treatment technology of concentrated stress disaster by the overlying coal pillar in close distance shallow seam[J]. Mining Safety & Environmental Protection, 2020, 47(4): 82–87.. doi: 10.19835/j.issn.1008-4495.2020.04.016
    [20] 杨俊哲, 郑凯歌, 王振荣, 等. 坚硬顶板动力灾害超前弱化治理技术[J]. 煤炭学报, 2020, 45(10): 3371–3379.. doi: 10.13225/j.cnki.jccs.2020.0599

    YANG Junzhe, ZHENG Kaige, WANG Zhenrong, et al. Technology of weakening and danger–breaking dynamic disasters by hard roof[J]. Journal of China Coal Society, 2020, 45(10): 3371–3379.. doi: 10.13225/j.cnki.jccs.2020.0599
    [21] 于斌, 高瑞, 夏彬伟, 等. 大空间坚硬顶板地面压裂技术与应用[J]. 煤炭学报, 2021, 46(3): 800–811.

    YU Bin, GAO Rui, XIA Binwei, et al. Ground fracturing technology and application of hard roof in large space[J]. Journal of China Coal Society, 2021, 46(3): 800–811.
    [22] 鞠金峰, 许家林, 王庆雄. 大采高采场关键层“悬臂梁”结构运动型式及对矿压的影响[J]. 煤炭学报, 2011, 36(12): 2115–2120.

    JU Jinfeng, XU Jialin, WANG Qingxiong. Cantilever structure moving type of key strata and its influence on ground pressure in large mining height workface[J]. Journal of China Coal Society, 2011, 36(12): 2115–2120.
    [23] 钱鸣高, 缪协兴, 何富连. 采场“砌体梁”结构的关键块分析[J]. 煤炭学报, 1994, 19(6): 557–563.. doi: 10.13225/j.cnki.jccs.1994.06.001

    QIAN Minggao, MIAO Xiexing, HE Fulian. Analysis of key block in the structure of voussoir beam in longwall mining[J]. Journal of China Coal Society, 1994, 19(6): 557–563.. doi: 10.13225/j.cnki.jccs.1994.06.001
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  16
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-03
  • 修回日期:  2022-06-30
  • 刊出日期:  2022-08-25
  • 网络出版日期:  2022-08-11

目录

    /

    返回文章
    返回