The relationship between continental chemical weathering trends in the North China Basin and the Late Carboniferous-Early Permian high-latitude glacial cycles
-
摘要: 【目的和方法】 晚古生代冰室期(LPIA;ca. 360~254 Ma)是地质历史时期唯一有记录冰室向温室过渡的时期,可以为冰川-环境-气候的协同演化和未来气候变化提供深时视角。为了深入理解晚石炭世-早二叠世低纬度地区大陆化学风化趋势和高纬度冈瓦纳地区冰川旋回之间的潜在联系,以华北盆地柳江煤田本溪组-太原组的泥岩为研究对象,利用由泥岩的元素地球化学数据计算得到的多种化学风化指标(CIA、CIW和 PIA),重建柳江煤田的大陆化学风化趋势和古气候演变特征。【结果】 结果显示,低纬度柳江煤田的大陆化学风化作用的周期性变化,包括巴什基尔阶早-中期、莫斯科阶-卡西莫夫阶、阿瑟尔阶早期的3个风化减弱阶段和巴什基尔阶晚期、格舍尔阶的2个风化增强阶段。这种风化趋势的循环交替与高纬度冈瓦纳大陆的冰川旋回密切相关:风化趋势的减弱阶段代表了气候条件向相对凉爽干燥转变,这几乎与高纬度冰期同步,而风化趋势的增强阶段则代表了气候条件向相对温暖湿润的变化,这与高纬度间冰期同步。对比分析发现,间冰期内火山活动频发、大气CO2浓度升高、气候变暖、水文循环增强、海平面上升,共同促进了热带雨林面积缩减和大陆化学风化作用增强,为铝土矿的发育创造了有利条件;而冰期内火山活动减弱、气候变凉、CO2浓度减少、雨林面积扩张,导致大陆风化作用减弱,有利于煤和富有机质泥岩形成。【结论】 研究结果揭示了低纬度华北盆地大陆化学风化趋势与高纬度冈瓦纳冰川旋回和沉积矿产(如煤、铝土矿)分布之间的联系,为理解地质历史时期冰川-环境-气候的复杂相互作用机制提供了新视角。Abstract: [Objective and Methods] Late Paleozoic glacial period (LPIA; ca. 360~254 Ma) is the only recorded transition from ice chamber to greenhouse in geological history, which can provide a deep temporal perspective on glacier-environment-climate coevolution and future climate change. In order to deeply understand the potential relationship between the continental chemical weathering trend in the Late Carboniferous-Early Permian low-latitude region and the glacial cycle in the high-latitude Gondwana region, the mudstone of the Benxi-Taiyuan Formation in the Liujiang coalfield of the North China Basin was taken as the research object, and the multiple chemical weathering indicators (CIA, CIW and PIA) calculated from elemental geochemical data of mudstones were used to reconstruct the continental chemical weathering trend and paleoclimatic evolution characteristics of the Liujiang coalfield. [Results] The results show that the periodic changes of continental chemical weathering in the low-latitude Liujiang coalfield include three weathering weakening stages in the early-middle Bashkir Stage, Moscovites-Kasimov Stage, and early Asshur Stage, and two weathering enhancement stages in the late Bashkir and Geschel stages. This cyclic alternation of weathering trends is closely related to the glacial cycles of the high-latitude Gondwana continent: the downward phase of the weathering trend represents a transition from climatic conditions to relatively cool and dry, which is almost synchronized with the high-latitude glacial period, while the upward phase of the weathering trend represents a change in climatic conditions towards relatively warm and humid, which coincides with the interglacial period at high latitudes. Through comparative analysis, it is found that the frequent volcanic activity, the increase of atmospheric CO2 concentration, climate warming, the enhancement of the hydrological cycle and the rise of sea level during the interglacial period jointly promote the reduction of tropical rainforest area and the enhancement of continental chemical weathering, which creates favorable conditions for the development of bauxite, while the weakening of volcanic activity, cooling climate, reduction of CO2 concentration and expansion of rainforest area during the glacial period lead to the weakening of continental weathering, which is conducive to the formation of coal and organicrich mudstone. [Conclusions] Study results reveals the relationship between the trend of continental chemical weathering in the North China Basin at low latitudes and the distribution of glacial cycles and sedimentary minerals (such as coal and bauxite) in the Gondwana glacier at high latitudes, which provides a new perspective for understanding the complex interaction mechanism of glacier-environment-climate in geological history.
-
Keywords:
- Late Paleozoic /
- North China Basin /
- chemical weathering /
- CIA /
- glacial period /
- interglacial period
-
-
[1] ISBELL J L,MILLER M F,WOLFE K L,et al. Timing of late Paleozoic glaciation in Gondwana; was glaciation responsible for the development of Northern Hemisphere cyclothems? in Chan,M.A.,and Archer,A.W.,eds.,Extreme depositional environ-ments:Mega end members in geologic time:Boulder,Colorado [M]. Geological Society of America Special Paper,2003,370:5-24.
[2] FIELDING C R,FRANK T D,BIRGENHEIER L P,et al. Stratigraphic imprint of the Late Palaeozoic Ice Age in eastern Australia:a record of alternating glacial and nonglacial climate regime[J]. Journal of the Geological Society,2008,165(1):129-140.
[3] HORTON D E,POULSEN C J,POLLARD D. Orbital and CO2 forcing of late Paleozoic continental ice sheets[J]. Geophysical Re-search Letters,2007,34(19).
[4] MONTAÑEZ I P,MCELWAIN J C,POULSEN C J,et al. Climate,pCO2 and terrestrial carbon cycle linkages during late Palaeozoic glacial–interglacial cycles[J]. Nature Geoscience,2016,9(11):824-828.
[5] MONTAÑEZ I P,TABOR N J,NIEMEIER D,et al. CO2-forced climate and vegetation instability during Late Paleozoic de-glaciation[J]. Science,2007,315(5808):87-91.
[6] ROCHA-CAMPOS A C,DOS SANTOS P R,CANUTO J R. Late paleozoic glacial deposits of Brazil:Paraná Basin[J]. 2008.
[7] SCHEFFLER K, HOERNES S, SCHWARK L. Global changes during Carboniferous–Permian glaciation of Gondwana:Linking polar and equatorial climate evolution by geochemical proxies[J]. Geology,2003,31(7):605-608.
[8] SOREGHAN G S,SOREGHAN M J,HEAVENS N G. Explo-sive volcanism as a key driver of the late Paleozoic ice age[J]. Ge-ology,2019,47(7):600-604.
[9] MCKENZIE N R,HORTON B K,LOOMIS S E,et al. Conti-nental arc volcanism as the principal driver of icehouse-greenhouse variability[J]. Science,2016,352(6284):444-447.
[10] GODDÉRIS Y,DONNADIEU Y,CARRETIER S,et al. Onset and ending of the late Palaeozoic ice age triggered by tec-tonically paced rock weathering[J]. Nature Geoscience,2017,10(5):382-386.
[11] KUMP L R,BRANTLEY S L,ARUTHUR M A. Chemical weathering,atmospheric CO2,and climate[J]. Annual Review of Earth and Planetary Sciences,2000,28(1):611-667.
[12] MATHER K, CHAMBERLAIN C P. Hydrologic regulation of chemical weathering and the geologic carbon cycle[J]. science,2014,343(6178):1502-1504.
[13] 朱先芳,李祥玉,栾玲. 化学风化研究的进展[J]. 首都师范大学学报(自然科学版),2010,31(3):40-46. ZHU Xianfang,LI Xiangyu,LUAN Ling. Journal of Capital Nor-mal University(Natural Science Edition),2010,31(3):40-46.
[14] 尚冠雄. 华北板块晚古生代煤地质学研究[M]. 山西科学技术出版社,1997.SHANG Guanxiong,Study on Late Paleozoic coal geology in North China plate[M]. Shanxi Science and Technology Press,1997. [15] BLAKEY R. Mollewide plate tectonic maps,Colorado plateau geosystems[OL]. World Wide Web address,2011.
[16] DONG Yunpeng,SANTOSH M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt,Central Chi-na[J]. Gondwana Research,2016,29(1):1-40.
[17] ZHANG Shuanhong ,ZHAO Yue,DAVIS G A,et al. Tem-poral and spatial variations of Mesozoic magmatism and defor-mation in the North China Craton:Implications for lithospheric thinning and decratonization[J]. Earth-Science Reviews,2014,131:49-87.
[18] WANG Jun. Late Paleozoic macrofloral assemblages from Weibei Coalfield,with reference to vegetational change through the Late Paleozoic Ice-age in the North China Block[J]. Interna-tional Journal of Coal Geology,2010,83(2-3):292-317.
[19] LU Jing,WANG Ye,YANG Minfang,et al. Records of vol-canism and organic carbon isotopic composition (δ13Corg) linked to changes in atmospheric pCO2 and climate during the Pennsyl-vanian icehouse interval [J]. Chemical Geology,2021,570:120168.
[20] NESBITT H W,YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,1982,299(5885):715-717.
[21] FEDO C M,NESBITT H W,YOUNG G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols,with implications for paleoweathering conditions and provenance[J]. Geology,1995, 23(10):921-924.
[22] NESBITT H W,YOUNG G M,MCLENNAN S M,et al. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance stud-ies[J]. The journal of geology,1996,104(5):525-542.
[23] HARNOIS L. The CIW index: a new chemical index of weather-ing[J]. Sedimentary geology,1988,55(3):319-322.
[24] MCLENNAN S M. Weathering and global denudation[J]. The Journal of Geology,1993,101(2):295-303.
[25] 徐小涛,邵龙义. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素[J]. 古地理学报,2018,20(03):515-522. XU Xiaotao,SHAO Longyi. Limiting factors in the analysis of weathering degree in source area by argillaceous rock chemical alteration index[J]. Acta Palaeogeography,2018,20(03):515-522.
[26] BHATIA M R,TAYLOR S R. Trace-element geochemistry and sedimentary provinces: a study from the Tasman Geosyncline,Australia[J]. Chemical geology,1981,33(1-4):115-125.
[27] PANAHI A,YOUNG G M,RAINBIRD R H. Behavior of major and trace elements (including REE) during Paleoprotero-zoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie,Québec,Canada[J]. Geochimica et Cosmo-chimica Acta,2000,64(13):2199-2220.
[28] 李雅楠. 华北板块石炭—二叠纪冰室期—温室期古环境记录[D]. 北京: 中国矿业大学(北京),2021.LI Yanan. Paleoenvironmental record of the Carboniferous-Permian glacial period-greenhouse period in the North China plate[D]. Beijing:China University of Mining and Technology(Beijing),2021. [29] BERNER R A. Paleozoic Atmospheric CO2:Importance of Solar Radiation and Plant Evolution[J]. Science,1993,261(5117):68-70.
[30] RIEBE C S,KIECHNER J W,GRANGER D E,et al. Strong tectonic and weak climatic control of long-term chemical weath-ering rates[J]. Geology,2001,29(6):511-514.
[31] YANG Jianghai,CAWOOD P A,MONTAÑEZ I P,et al. Enhanced continental weathering and large igneous province in-duced climate warming at the Permo-Carboniferous transition[J]. Earth and Planetary Science Letters,2020,534:116074.
[32] GRIFFIS N P,MONTAÑEZ I P,MUNDIL R,et al. Coupled stratigraphic and U-Pb zircon age constraints on the late Paleozo-ic icehouse-to-greenhouse turnover in south-central Gondwa-na[J]. Geology,2019,47(12):1146-1150.
[33] FIELDING C R,FRANK T D,BIRGENHEIER L P. A revised,late Palaeozoic glacial time-space framework for eastern Austral-ia,and comparisons with other regions and events[J]. Earth-Science Reviews,2023,236:104263.
[34] VISSER J N J,VAN NIEKERK B N,VANDER MERWE S W. Sediment transport of the late Palaeozoic glacial Dwyka Group in the southwestern Karoo Basin[J]. South African Journal of Geology,1997,100(3):223-236.
[35] MONTAÑEZ I P,POULSEN C J. The Late Paleozoic ice age:an evolving paradigm[J]. Annual Review of Earth and Planetary Sciences,2013,41(1):629-656.
[36] ZHANG Peixin,YANG Minfang,LU Jing,et al. Low-latitude climate change linked to high-latitude glaciation during the late paleozoic ice age:Evidence from terrigenous detrital kaolinite [J]. Frontiers in Earth Science,2022,10:1-8.
[37] FOSTER G L,ROYER D L,Lunt D J. Future climate forcing potentially without precedent in the last 420 million years[J]. Na-ture communications,2017,8(1):14845.
[38] RICHEY J D,MONTAEZ I P,GODDERIS Y,et al. Influ-ence of temporally varying weatherability on CO2–climate cou-pling and ecosystem change in the late Paleozoic[J]. Climate of the Past,2020,16(5):1759–1775.
[39] PRICE G D,VALDES P J,SELLWOOD B W. Prediction of modern bauxite occurrence:implications for climate reconstruc-tion[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,1997,131(1-2):1-13.
[40] 林景昱.元素分析法在柳江盆地古沉积环境研究中的应用[D].秦皇岛: 燕山大学,2023.LIN Jingyu. Application of elemental analyses in the study of pal-aeosedimentary environments in the Liujiang Basin [D]. Qinhuangdao:Yanshan University,2023. [41] LUPKER M,FRANCE-LANORD C,GALY V,LAVÉ J. Increasing chemical weathering in the Himalayan system since the Last Glacial Maximum[J]. Earth and Planetary Science Let-ters,2013,365:243–252.
[42] 路洪海,张重阳. 秦皇岛地区典型地表喀斯特地貌成因分析[J]. 聊城大学学报(自然科学版). 2007,20(1): 53-55. LU Honghai,ZHANG Chongyang. Analysis of the genesis of typical surface karst landforms in Qinhuangdao area[J]. Journal of Liaocheng University (Natural Science Edition). 2007,20(1):53-55.
[43] 张英利,陈雷,王坤明,等.豫西巩义地区上石炭统本溪组泥岩地球化学和富锂特征及其控制因素[J].地球科学与环境学报,2023,45(2):208-226. ZHANG Yingli,CHEN Lei,WANG Kunming,et al. Geochemical and lithium-rich characteristics of mudstones of the Upper Car-boniferous Benxi Formation and their controlling factors in the Gongyi area,West Henan Province[J]. Journal of Earth Science and Environment,2023,45(2):208-226.
[44] 付亚飞,邵龙义,张亮,等.焦作煤田石炭—二叠纪泥质岩地球化学特征及古环境意义[J].沉积学报,2018,36(2):415-426. FU Yafei,SHAO Longyi,ZHANG Liang,et al. Geochemical char-acteristics and palaeoenvironmental significance of Carbonifer-ous-Permian mudstones from the Jiaozuo Coalfield[J]. Journal of Sedimentation,2018,36(2):415-426.
[45] CLEAL C J,THOMAS B A. Palaeozoic tropical rainforests and their effect on global climates: is the past the key to the pre-sent? [J]. Geobiology,2005,3(1):13–31.
[46] 邵龙义,董大啸,李明培,等. 华北石炭—二叠纪层序-古地理及聚煤规律[J]. 煤炭学报,2014,39(8): 1725-1734. Shao Longyi,Dong Daxiao,Li Mingpei,et al. Sequence-paleogeography and coal accumulation of the Carboniferous-Permian in the North China Basin[J]. Journal of China Coal So-ciety,2014,39(8):1725-1734.
[47] Lu Jing,Zhou Kai,Yang Minfang,et al. Records of organic carbon isotopic composition (δ13Corg) and volcanism linked to changes in atmospheric pCO2 and climate during the Late Paleo-zoic Icehouse[J]. Global and Planetary Change,2021,207:103654.
[48] ZHANG Peixin,YANG Minfang,LU Jing,et al. Four vol-canically driven climatic perturbations led to enhanced continen-tal weathering during the Late Triassic Carnian Pluvial Epi-sode[J]. Earth and Planetary Science Letters,2024,626:118517.
[49] WANG Ye,LU Jing, YANG Minfang,et al. Volcanism and wildfire associated with deep-time deglaciation during the Artinskian (early Permian)[J]. Global and Planetary Change,2023,225:104126.
计量
- 文章访问数: 25
- HTML全文浏览量: 1
- PDF下载量: 8