Development characteristics of water-conducting fractured zone in deep coal seam based on microseismic monitoring
-
摘要: 导水裂隙带发育高度是矿井水害预测的重要技术参数之一。以彬长矿区文家坡煤矿4103工作面为研究对象,利用井-地联合微震监测技术对顶板导水裂隙带发育特征进行研究。研究结果表明:深埋煤层开采时,微震事件超前工作面回采位置发育,超前影响角最大为35°,最小为28°;断层的存在降低了覆岩稳定性,相较于正常基岩,更易在回采影响下发生应力集中和破坏;断层加大了微震事件发生的超前距,而采空区则使微震事件的高密度区向其所在部位发生偏移,加剧覆岩破坏程度,增大导水裂隙带发育高度;垂向上,4103工作面监测区内的微震事件高密度区域主要集中在高程+400~+520 m,结合微震事件数量和能量分布特征,判定4103工作面垮落带发育高度为50 m,垮采比13.16,导水裂隙带发育高度为117 m,裂采比为30.79。该成果可为彬长矿区类似煤矿深埋煤层顶板导水裂隙带发育高度研究及顶板水防治提供重要依据。移动阅读Abstract: The development height of the water conducting fractured zone is one of the important technical parameters for mine water hazards prediction. In this paper, the combined well-surface microseismic monitoring technology was used to analyze the development characteristics of the water conducting fractured zone in working face 4103 in Wenjiapo coal mine. The results showed that for deep buried coal seams, the microseismic events occured in the advance mining face with advanced influence angle ranging from the minimum of 28° to the maximum of 35°. The stability of overburden decreased due to the faults. Thus, compared with normal bedrock, the overburden rock was easier to cause stress concentration and rock failure under the influence of coal mining. The distance between the microseismic event location and mining position increased affected by the fault, and the high density distribution area of the microseismic events shifted to the goaf, which aggravated the degree of overburden failure and increased the water conducting fractured zone height. In vertical direction, the high density area of microseismic events in the monitoring area of working face 4103 ranged from +400 m to +520 m. Combined with the number and the energy distribution characteristics of microseismic events, it could be concluded that the development height of caving zone in working face 4103 was 50 m, and the ratio of caving to mining was 13.16. The development height of water-conducting fractured zone was 117 m, and the ratio of fracturing to mining was 30.79. The results could provide an important basis for the analysis of water conducting fractured zone height of deep coal seam and the prevention of roof mine water disaster in Binchang mining area.
-
-
[1] 李超. 煤炭开采中导水裂隙带发育高度预测的研究[J]. 内蒙古煤炭经济,2016,34(17):88-89. LI Chao. Study on the prediction of the development height of the water conducting fracture zone in coal mining[J]. Inner Mongolia Coal Economy,2016,34(17):88-89.
[2] 袁喜东. 榆神矿区导水裂隙带发育规律研究[D]. 西安:西安科技大学,2017. YUAN Xidong. Study on Yulin-shenmu coal mine areas lead water fracture zones development pattern[D]. Xi'an:Xi'an University of Science and Technology,2017. [3] 黄万朋,高延法,王波,等. 覆岩组合结构下导水裂隙带演化规律与发育高度分析[J]. 采矿与安全工程学报,2017,34(2):330-335. HUANG Wanpeng,GAO Yanfa,WANG Bo,et al. Evolution rule and development height of permeable fractured zone under combined-strata structure[J]. Journal of Mining & Safety Engineering,2017,34(2):330-335.
[4] 程关文,王悦,马天辉,等. 煤矿顶板岩体微震分布规律研究及其在顶板分带中的应用-以董家河煤矿微震监测为例[J]. 岩石力学与工程学报,2017,36(增刊2):4036-4046. CHENG Guanwen,WANG Yue,MA Tianhui,et al. Research on the partitioning method of the overburden in coal mine based on microseismic monitoring[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(Sup.2):4036-4046.
[5] 姜福兴,叶根喜,王存文,等. 高精度微震监测技术在煤矿突水监测中的应用[J]. 岩石力学与工程学报,2008,27(9):1932-1938. JIANG Fuxing,YE Genxi,WANG Cunwen,et al. Application of high-precision microseismic monitoring technique to water inrush monitoring in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1932-1938.
[6] 李少飞. 微震监测技术研究现状及展望[J]. 煤炭科技,2017(3):197-199. LI Shaofei. Present situation and prospect of microseismic monitoring technology[J]. Coal Science & Technology Magazine,2017(3):197-199.
[7] 杜涛涛. 基于微震监测的综放工作面覆岩"两带"高度确定[J]. 煤矿开采,2016,21(5):79-82. DU Taotao. Two-zones height determination of top coal caving working face based on micro seismic monitoring[J]. Coal Mining Technology,2016,21(5):79-82.
[8] 金维浚,张衡,张文辉,等. 微地震监测技术及应用[J]. 地震,2013,33(4):84-96. JIN Weijun,ZHANG Heng,ZHANG Wenhui,et al. Technology and application of micro-seismic monitoring[J]. Earthquake,2013,33(4):84-96.
[9] 于克君,骆循,张兴民. 煤层顶板"两带"高度的微地震监测技术[J]. 煤田地质与勘探,2002,30(1):47-51. YU Kejun,LUO Xun,ZHANG Xingmin. The technique of micro-seismic monitoring the height of "two zones"[J]. Coal Geology & Exploration,2002,30(1):47-51.
[10] 汪华君,姜福兴,成云海,等. 覆岩导水裂隙带高度的微地震(MS)监测研究[J]. 煤炭工程,2006,38(3):74-76. WANG Huajun,JIANG Fuxing,CHENG Yunhai,et al. Study on microseismic(MS) monitoring of the height of water flowing fracture zone in overlying rock[J]. Coal Engineering,2006,38(3):74-76.
[11] 孔令海,姜福兴,杨淑华,等. 基于高精度微震监测的特厚煤层综放工作面顶板运动规律[J]. 北京科技大学学报,2010,32(5):552-558. KONG Linghai,JIANG Fuxing,YANG Shuhua,et al. Movement of roof strata in extra-thick coal seams in top-coal caving mining based on a high precision micro-seismic monitoring system[J]. Journal of University of Science and Technology Beijing,2010,32(5):552-558.
[12] 刘超,吴顺川,程爱平,等. 采动条件下底板潜在导水通道形成的微震监测与数值模拟[J]. 北京科技大学学报,2014,36(9):1129-1135. LIU Chao,WU Shunchuan,CHENG Aiping,et al. Microseismic monitoring and numerical simulation of the formation of water inrush pathway caused by coal mining[J]. Journal of University of Science and Technology Beijing,2014,36(9):1129-1135.
[13] 丛森,程建远,王云宏,等. 导水裂隙带发育高度的微震监测研究[J]. 中国矿业,2017,26(3):126-131. CONG Sen,CHENG Jianyuan,WANG Yunhong,et al. Study on microseismic monitoring of height of water flowing fracture zone[J]. China Mining Magazine,2017,26(3):126-131.
[14] 孙运江,左建平,李玉宝,等. 邢东矿深部带压开采导水裂隙带微震监测及突水机制分析[J]. 岩土力学,2017,38(8):2335-2342. SUN Yunjiang,ZUO Jianping,LI Yubao,et al. Micro-seismic monitoring on fractured zone and water inrush mechanism analysis of deep mining above aquifer in Xingdong coalmine[J]. Rock and Soil Mechanics,2017,38(8):2335-2342.
[15] 原富珍,马克,庄端阳,等. 基于微震监测的董家河煤矿底板突水通道孕育机制[J]. 煤炭学报,2019,44(6):1846-1856. YUAN Fuzhen,MA Ke,ZHUANG Duanyang,et al.Preparation mechanism of water inrush channels in bottom floor of Dongjiahe coal mine based on microseismic monitoring[J]. Journal of China Coal Society,2019,44(6):1846-1856.
[16] 段建华,闫文超,南汉晨,等. 井-孔联合微震技术在工作面底板破坏深度监测中的应用[J]. 煤田地质与勘探,2020,48(1):208-213. DUAN Jianhua,YAN Wenchao,NAN Hanchen,et al. Application of mine-hole joint microseismic technology in monitoring the damage depth of working face floor[J]. Coal Geology & Exploration 2020,48(1):208-213.
[17] 杨尚欢,侯成录,何顺斌,等. 采动条件下围岩破裂区域的微震监测研究[J]. 现代矿业,2017,33(10):165-168. YANG Shanghuan,HOU Chenglu,HE Shunbin,et al. Study on microseismic monitoring of surrounding rock fracture area under mining condition[J]. Modern Mining,2017,33(10):165-168.
[18] 姜福兴,XUN Luo,杨淑华. 采场覆岩空间破裂与采动应力场的微震探测研究[J]. 岩土工程学报,2003,25(1):23-25 . JAING Fuxing,XUN Luo,YANG Shuhua. Study on microseismic monitoring for spatial structure of overlying strata and mining pressure field in long wall face[J]. Chinese Journal of Geotechnical Engineering,2003,25(1):23-25
[19] 李超峰. 黄陇煤田综放采煤顶板导水裂缝带高度发育特征[J]. 煤田地质与勘探,2019,47(2):129-136. LI Chaofeng. Characteristics of height of water flowing fractured zone caused during fully-mechanized caving mining in Huanglong coalfield[J]. Coal Geology & Exploration,2019,47(2):129-136.
-
期刊类型引用(23)
1. 姜万明,薛雄飞,马壮,胡志华,刘桂璋,吉勇,李方典. 榆神矿区工作面煤层顶板导水裂隙带特征. 西安科技大学学报. 2024(01): 123-134 . 百度学术
2. 刘盛东,杨彩,章俊,李纯阳,任川. 矿井微震与电法耦合监测技术. 煤炭学报. 2024(01): 586-600 . 百度学术
3. 屈少波,马仪鹏,郭国强,周杨. 榆树坡煤矿5~#煤首采工作面两带发育高度研究. 煤炭技术. 2024(06): 114-119 . 百度学术
4. 高兴斌,张加加,杨康,贺伟,史志华,陈梁,白如鸿,孙强. 基于地质概化的坚硬厚基岩覆岩裂隙场演变特征研究. 煤矿安全. 2024(05): 151-159 . 百度学术
5. 周金艳,杨洪增,高杰涛. 煤矿不等长工作面微震事件空间分布特征及其影响因素. 煤田地质与勘探. 2024(06): 128-136 . 本站查看
6. 王杰. 河下采煤“两带”微震监测应用研究. 价值工程. 2024(20): 84-87 . 百度学术
7. 王峰,杨焱钧,王江平,范继超. 澄合矿区导水裂隙带发育高度多元线性回归方法预测. 陕西煤炭. 2024(07): 162-165 . 百度学术
8. 李海涛,齐庆新,杜伟升,张海宽,杨冠宇,王守光,石晓闪,李春元,崔春阳,郑伟钰,郑建伟,何团,朱维. 煤炭开采等地下工程问题的数字岩石力学解决方案. 煤炭科学技术. 2024(09): 150-161 . 百度学术
9. 窦志明. 自燃煤层高位抽采钻孔参数优化与应用. 江西煤炭科技. 2023(02): 170-172+175 . 百度学术
10. 连会青,杨艺,杨松霖,唐忠义,徐斌,裴文贤,王瑞,李启兴. 基于微震监测技术的煤矿顶板水害预测. 煤矿安全. 2023(05): 49-55 . 百度学术
11. 袁国涛,张明伟,王杰,卫俊,杨坤. 采动覆岩微震分区演化特征的数值模拟研究. 煤炭科学技术. 2023(08): 36-46 . 百度学术
12. 郭小铭,刘英锋,谷占兴. 彬长矿区煤层开采导水裂隙带高度探测及计算. 采矿与岩层控制工程学报. 2023(05): 91-100 . 百度学术
13. 程磊,罗辉,李辉,张玥. 近年来煤矿采动覆岩导水裂隙带的发育高度的研究进展. 科学技术与工程. 2022(01): 28-38 . 百度学术
14. 侯恩科,刘博,龙天文,徐维,魏启明,马进勇. 深埋缓倾斜双煤层开采导水断裂带发育规律研究. 煤矿安全. 2022(03): 50-57 . 百度学术
15. 陈国红. 顶板砂岩水下煤层开采覆岩导水裂隙带发育高度研究. 能源与环保. 2022(05): 281-286 . 百度学术
16. 郭国强. 综放开采特厚煤层采场底板破坏规律研究. 煤田地质与勘探. 2022(08): 107-115 . 本站查看
17. 薛卫峰,侯恩科,王苏健. 无煤柱切顶沿空留巷底板破坏规律. 西安科技大学学报. 2022(06): 1133-1139 . 百度学术
18. 郭维强. 大采高综采覆岩两带发育高度特征研究. 中国安全科学学报. 2022(S2): 142-147 . 百度学术
19. 薛雄飞. 瞬变电磁法在导水裂缝带高度探测中的应用. 陕西煤炭. 2021(02): 181-184 . 百度学术
20. 杨艺,孟璐. 亭南煤矿微震监测数据与工作面涌水量关系研究. 华北科技学院学报. 2021(01): 22-29 . 百度学术
21. 马赞,陈冬冬,解恒星,陈天柱,王彬,贾秉义. 负角度定向长钻孔瓦斯抽采完孔工艺研究. 煤田地质与勘探. 2021(03): 62-68 . 本站查看
22. 赵龙飞. 大倾角煤层开采覆岩移动及应力变化数值模拟分析. 山西冶金. 2021(04): 145-146+163 . 百度学术
23. 王凯峰,唐书恒,张松航,杨宁,郗兆栋,张迁,王敬宇. 构造条件和水力压裂控制下的煤层气井异常高产水成因探讨. 煤炭学报. 2021(S2): 849-861 . 百度学术
其他类型引用(18)
计量
- 文章访问数: 161
- HTML全文浏览量: 15
- PDF下载量: 31
- 被引次数: 41