高家堡煤矿煤层顶板水水化学特征及其水害防治技术

任邓君, 孙亚岳, 李建阳

任邓君, 孙亚岳, 李建阳. 高家堡煤矿煤层顶板水水化学特征及其水害防治技术[J]. 煤田地质与勘探, 2019, 47(S1): 26-31. DOI: 10.3969/j.issn.1001-1986.2019.S1.005
引用本文: 任邓君, 孙亚岳, 李建阳. 高家堡煤矿煤层顶板水水化学特征及其水害防治技术[J]. 煤田地质与勘探, 2019, 47(S1): 26-31. DOI: 10.3969/j.issn.1001-1986.2019.S1.005
REN Dengjun, SUN Yayue, LI Jianyang. Hydrochemical characteristics and control of water hazard from coal seam roof in Gaojiabao coal mine[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(S1): 26-31. DOI: 10.3969/j.issn.1001-1986.2019.S1.005
Citation: REN Dengjun, SUN Yayue, LI Jianyang. Hydrochemical characteristics and control of water hazard from coal seam roof in Gaojiabao coal mine[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(S1): 26-31. DOI: 10.3969/j.issn.1001-1986.2019.S1.005

 

高家堡煤矿煤层顶板水水化学特征及其水害防治技术

详细信息
    作者简介:

    任邓君,1987年生,男,山东平度人,工程师,从事水文地质与矿井水害防治研究.E-mail:308739529@qq.com

  • 中图分类号: P641.4

Hydrochemical characteristics and control of water hazard from coal seam roof in Gaojiabao coal mine

  • 摘要: 地下水化学特征反映了地下水所处的地球化学场。高家堡煤矿主采4煤层顶板充水含水层包括侏罗系砂岩含水层、白垩系洛河组含水层等。这些含水层水的离子比例相近,但矿化度相差较大,且明显随着埋藏深度增大而增大。高家堡煤矿顶板含水层水的同位素数据表明,洛河组含水层受地表水和大气降水补给。根据工作面出水点的矿化度,采用水质混合原理,计算出出水水源及比例构成,建立涌水量与矿化度关系,为制定防治水措施提供依据。确定高家堡煤矿防治水技术措施为减小导水裂隙高度或顶板注浆。研究煤层顶板水水化学特征对高家堡煤矿的防治水工作有重要的指导意义。
    Abstract: The chemical properties of groundwater reflect the characteristics of geochemical field in which groundwater is located. The roof water-filled aquifers of No. 4 coal seam in Gajiabu Coal Mine include Jurassic sandstone aquifer, Cretaceous Luohe Formation aquifer and so on. The ion proportion of the aquifer water is similar, but the mineralization varies greatly, and obviously increases with the increase of buried depth. The isotopic properties of roof aquifer water in Gaojiabu Coal Mine show that the aquifer of Luohe Formation is recharged by surface water and atmospheric precipitation. According to the above hydrochemical characteristics, the basic idea of water prevention and control work in Gajiabao was determined. According to the salinity analysis of the outlet point of the working face, the water source and proportion composition of the effluent can be calculated, and it is put forward that the water source and the proportion composition of the effluent can be calculated. Corresponding measures were proposed to prevent and control water. It is of great significance to study the chemical characteristics of water in coal seam roof for the prevention and control of water in Gajiabu coal mine.
  • [1] 汪世花. 鹤壁矿区各含水层化学特征与水源判别初探[J]. 中州煤炭,1998(2):30-31.

    WANG Shihua. Aquifer hydrochemical characteristics and water source mine water source discrimination in Hebi mining area[J]. Zhongzhou Coal,1998(2):30-31.

    [2]

    GAMMONS C H,POULSON S R,PELLICORI D A,et al. The hydrogen and oxygen isotopic composition of precipitation,evaporated mine water,and river water in Montana,USA[J]. Journal of Hydrology,2006,328(1-2):319-330.

    [3]

    DAVIS A,ASHENBERG D. The aqueous geochemistry of the Berkeley Pit,Butte,Montana,USA[J]. Applied Geochemistry,1989,4(1):23-36.

    [4] 赵振华,袁革新,吴吉春,等. 西北某放射性废物处置预选区地下水水化学特征及地球化学模拟[J]. 水文地质工程地质,2011,38(4):1-7.

    ZHAO Zhenhua,YUAN Gexin,WU Jichun,et al. Hydrochemical characteristics and hydrogeochemical modeling of groundwater in a certain potential radioactive waste disposal site in Northwest China[J]. Hydrogeology & Engineering Geology,2011,38(4):1-7.

    [5] 王文祥,王瑞久,李文鹏,等. 塔里木盆地河水氢氧同位素与水化学特征分析[J]. 水文地质工程地质,2013,40(4):29-35.

    WANG Wenxiang,WANG Ruijiu,LI Wenpeng,et al. Analysis of stable isotopes and hydrochemistry of rivers in Tarim basin[J]. Hydrogeology & Engineering Geology,2013,40(4):29-35.

    [6] 荆秀艳,王文科,张福存,等. 银北平原浅层地下水的水化学特征及成因分析[J]. 人民黄河,2012,34(1):65-68.

    JING Xiuyan,WANG Wenke,ZHANG Fuzhu,et al. Hydrochemical characteristics and genesis analysis of shallow groundwater in Yinbei Plain[J]. The people's Yellow River,2012,34(1):65-68.

    [7]

    MOUSSA A B,ZOUARI K,MARC V. Hydrochemical and isotope evidence of groundwater salinization processes on the coastal plain of Hammamet-Nabeul,north-eastern Tunisia[J]. Physics & Chemistry of the Earth Parts A/b/c,2011,36(5-6):167-178.

    [8] 沈照理,朱宛华,钟左. 水文地球化学基础[M]. 北京:地质出版社,1993.
    [9] 蒲焘,何元庆,朱国锋,等. 丽江盆地地表-地下水的水化学特征及其控制因素[J]. 环境科学,2012,33(1):48-54.

    PU Tao,HE Yuanqing,ZHU Guofeng,et al. Hydrochemical characteristics and control factors of ground water in lijiang basin[J]. Environmental Science,2012,33(1):48-54.

    [10] 葛中华,沈文,贝怀成. 徐州某矿井奥陶系灰岩含水层上开采矿井突水的水文地质初步研究[J]. 地质学刊,1994(2):91-96.

    GE Zhonghua,SHEN Wen,BEI Huaicheng. Preliminary study on hydrogeology of mining mine water inrush on Ordovician limestone aquifer in Xuzhou[J]. Journal of geology,1994(2):91-96.

    [11] 孙福勋,魏久传,万云鹏,等. 基于Fisher判别分析和质心距评价法的矿井水源判别[J]. 煤田地质与勘探,2017,45(1):80-84.

    SUN Fuxun,WEI Jiuchuan,WAN Yunpeng,et al. Recognition method of mine water source based on Fisher's discriminant analysis and centroid distance evaluation[J]. Coal Geology & Exploration,2017,45(1):80-84.

    [12] 陈陆望,桂和荣,胡友彪,等. 皖北矿区煤层底板岩溶水水化学特征研究[J]. 煤田地质与勘探,2003,31(2):27-30.

    CHEN Luwang,GUI Herong,HU Youbiao,et al. Study on the hydrochemical characteristics of the karst water in the bottom plate of the coal seam in the north of Anhui Province[J]. Coal Geology & Exploration,2003,31(2):27-30.

    [13] 殷晓曦,许光泉,桂和荣,等. 系统聚类逐步判别法对皖北矿区突水水源的分析[J]. 煤田地质与勘探,2006,34(2):58-61.

    YIN Xiaoxi,XU Guangquan,GUI Herong,et al. Analysis of water inrush water source in northern Anhui mining area by systematic clustering stepwise discriminant method[J]. Coal Geology & Exploration,2006,34(2):58-61.

    [14] 成春奇,徐龙. 临涣矿区水化学特征及在矿井水源判别中的意义[J]. 煤田地质与勘探,1995(1):43-47.

    CHENG Chunqi,XU Long. Hydrochemical characteristics of Linhuan mining area and its significance in mine water source discrimination[J]. Coal Geology & Exploration,1995(1):43-47.

    [15] 朱庆伟,李小明. 基于水化学特征分析的矿井突水水源判别[J]. 华北科技学院学报,2015(3):29-32.

    ZHU Qingwei,LI Xiaoming. Identification of water inrush water source in mine based on hydrochemical characteristics analysis[J]. Journal of North China Institute of Science and Technology,2015(3):29-32.

    [16] 李贵娟,杨磊,葛胜伟,等. 基于水化学特征分析的崔木煤矿水源研究[J]. 化工设计通讯,2017,43(5):135-135.

    LI Guijuan,YANG Lei,GE Shengwei,et al. Study on water source of Cui's coal mine based on hydrochemical characteristics analysis[J]. Chemical Engineering Design Communications,2017,43(5):135-135.

  • 期刊类型引用(19)

    1. 汪伟民,郝红俊,翟晓荣,程龙艺,汪蒙,庞瑶. 基于改进AHP-独立性权系数法的地质构造复杂程度定量评价. 煤炭技术. 2024(04): 119-124 . 百度学术
    2. 高阳. 熵权耦合聚类法在奥灰岩溶水系统径流带划分中的应用. 华北自然资源. 2023(04): 61-63 . 百度学术
    3. 李军,张波. 基于IFAHP-改进熵权法的煤矿综合防尘体系安全评价. 煤炭技术. 2023(09): 195-199 . 百度学术
    4. 安律宁,陈继福,董广铭,李玉兵. 基于层次聚类模糊综合评判的矿井突水危险性评价. 煤炭与化工. 2023(10): 49-56 . 百度学术
    5. 万松,范祝连,邓双,卞阿娜. 基于GIS的山地生态县域生态敏感性研究——以闽侯县为例. 南方林业科学. 2022(02): 58-63 . 百度学术
    6. 姚辉,尹尚先,徐维,张润畦,蒋知廷. 基于组合赋权的加权秩和比法的底板突水危险性评价. 煤田地质与勘探. 2022(06): 132-137 . 本站查看
    7. 郑剑英. 基于综合赋权的煤层底板突水危险性评价. 工矿自动化. 2022(08): 140-146 . 百度学术
    8. 黄家远. 基于IFAHP-熵权法的煤矿瓦斯防治系统安全评价. 中国矿山工程. 2022(04): 9-15 . 百度学术
    9. 左林霄,高鹏,冯栋,王晓玮,侯恩科. 基于AHP-熵权法耦合方法的地质构造复杂程度定量评价. 煤炭科学技术. 2022(11): 140-149 . 百度学术
    10. 尹会永,周鑫龙,郎宁,张历峰,王明丽,吴焘,李鑫. 基于SSA优化的GA-BP神经网络煤层底板突水预测模型与应用. 煤田地质与勘探. 2021(06): 175-185 . 本站查看
    11. 黄欢,朱宏军. 基于“富水性指数法”的煤层顶板含水层涌水危险性评价. 煤矿安全. 2020(02): 192-196 . 百度学术
    12. 施龙青,张荣遨,韩进,丛培章,秦道霞,郭玉成. 基于熵权法-层次分析法耦合赋权的多源信息融合突水危险性评价. 河南理工大学学报(自然科学版). 2020(03): 17-25 . 百度学术
    13. 韩承豪,魏久传,谢道雷,徐建国,张伟杰,赵智超. 基于集对分析-可变模糊集耦合法的砂岩含水层富水性评价——以宁东矿区金家渠井田侏罗系直罗组含水层为例. 煤炭学报. 2020(07): 2432-2443 . 百度学术
    14. 刘伟韬,孙茜,徐百超. 基于GIS及主成分熵权法的底板突水危险性评价. 矿业研究与开发. 2020(11): 83-88 . 百度学术
    15. 董丽丽,费城,张翔,曹超凡. 基于LSTM神经网络的煤矿突水预测. 煤田地质与勘探. 2019(02): 137-143 . 本站查看
    16. 王志刚,付小锦,梁杰,曹健,江胜国. 天津静海含煤区无井式煤炭地下气化选址地质评价模型. 煤田地质与勘探. 2019(03): 41-48 . 本站查看
    17. 刘德民,尹尚先,连会青. 煤矿工作面底板突水灾害预警重点监测区域评价技术. 煤田地质与勘探. 2019(05): 9-15 . 本站查看
    18. 霍丙杰,解振华,范张磊,荆雪冬. 陷落柱渗流突水机理及强度主控因素模拟. 煤田地质与勘探. 2019(06): 84-91 . 本站查看
    19. 胡今朝,林雨佳. 层次分析法在矿山地质环境检测中的应用. 世界有色金属. 2018(22): 276-277 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  230
  • HTML全文浏览量:  67
  • PDF下载量:  44
  • 被引次数: 23
出版历程
  • 收稿日期:  2019-06-20
  • 发布日期:  2019-09-19

目录

    /

    返回文章
    返回