Numerical simulation study on permeability enhancement effect of high pressure water cutting coal seam
-
摘要: 针对井下高压水射流切割煤层增透技术,利用FLAC3D数值模拟软件,建立三维有限元模型,对不同煤体结构(软煤、硬煤)、切割深度和切割环数等因素的卸压增透效果进行数值模拟分析。模拟结果表明:在水力切割相同半径下,软煤的卸压范围约为硬煤的1.8倍,变形量约为硬煤的2.6倍;水力切割半径由0.5 m增至1 m时,煤体中应力降低为90%的区域和煤体变形量分别提高到1.56倍和1.66倍;相邻切割缝槽之间出现了交互影响,钻孔的卸压范围和煤体变形量显著增大,水力切割区域煤体呈现整体卸压状态。将数值模拟的卸压范围与理论公式计算结果进行了对比,二者之间的误差为0.46%~9.84%,表明采用数值模拟技术研究水力切割增透效果是可靠的。Abstract: For permeability enhancement technology of high pressure water cutting coal seam, the effect of pressure relief in different coal (soft and hard coal), the corresponding slot number and the cutting depth were analyzed trough numerical simulation. The numerical simulation study was realized by three-dimensional finite element model established by the numerical simulation software FLAC3D. The results showed that the released pressure and distortion range of soft coal were respectively about 1.8 and 2.6 times higher than hard coal's when the hydraulic cutting radius was the same. When the slot radius increased from 0.5 m to 1 m, the area of which pressure was 90% of the original and distortion range increased respectively to 1.56 times and 1.66 times. The drilling pressure relief and the deformation range of coal increased significantly which were caused by the mutual influence emerged between the slots, the hydraulic coal cutting area presents the overall pressure relief. The error range is 0.46% to 9.84% when the released range of the numerical simulation was compared with the results of theoretical formula, it shows that it is reliable to use numerical simulation to study the effect of permeability enhancement of hydraulic cutting.
-
Keywords:
- hydraulic slotting /
- anti-reflection effect /
- numerical simulation study /
- coal structure /
- FLAC3D
-
-
[1] 申宝宏,刘见中,张泓. 我国煤矿瓦斯治理的技术对策[J]. 煤炭学报,2007,32(7):673-679. SHEN Baohong,LIU Jianzhong,ZHANG Hong. The technical measures of gas control in China coal mines[J]. Journal of China Coal Society,2007,32(7):673-679.
[2] 葛兆龙,梅绪东,贾亚杰. 高压水射流割缝钻孔抽采影响半径研究[J]. 采矿与安全工程学报,2014,31(4):657-664. GE Zhaolong,MEI Xudong,JIA Yajie,et al. Influence radius of slotted borehole drainage by high pressure water jet[J]. Journal of Mining & Safety Engineering,2014,31(4):657-664.
[3] 王勇,杨毕,姚荐达. 割缝钻孔水压致裂增透过程的数值模拟[J]. 煤炭技术,2014,33(9):45-47. WANG Yong,YANG Bi,YAO Jianda. Numerical simulation of process of hydraulic fracturing of slotted drilling[J]. Coal Technology,2014,33(9):45-47.
[4] 吴海进,林柏泉,杨威,等. 初始应力对缝槽卸压效果影响的数值分析[J]. 采矿与安全工程学报,2009,26(2):194-197. WU Haijin,LIN Baiquan,YANG Wei,et al. Numerical analysis of the pressure relief effect on slot at different initial stresses[J]. Journal of Mining & Safety Engineering,2009,26(2):194-197.
[5] 张其智,林柏泉,孟凡伟,等. 高压水射流割缝对煤体扰动影响规律研究及应用[J]. 煤炭科学技术,2011,39(10):49-52. ZHANG Qizhi,LIN Baiquan,MENG Fanwei,et al. Research and application on disturbance influence law of seam slot cutting with high pressurized water jet[J]. Coal Science and Technology,2011,39(10):49-52.
[6] 崔谟慎,孙家骏. 高压水射流技术[M]. 北京:煤炭工业出版社,1992:89-101. [7] 邱德才,武贵生,陈冬冬,等. 复合水力化增透技术在低渗突出煤层瓦斯抽采中的应用[J]. 煤田地质与勘探,2015,43(1):13-16. QIU Decai,WU Guisheng,CHEN Dongdong,et al. Compound-hydraulic technology enhancing permeability in lowly permeable and outburst-prone seam[J]. Coal Geology & Exploration,2015,43(1):13-16.
[8] 瞿涛宝. 关于水力割缝技术对防止煤与瓦斯突出有效性的探讨[J]. 煤矿安全,1982(12):21-28. QU Taobao. Discuss on the effective of prevent coal and gas outburst by hydraulic cutting seam technology[J]. Safety in Coal Mines,1982(12):21-28.
[9] 段康廉,冯增朝,赵阳升,等. 低渗透煤层钻孔与水力割缝瓦斯排放的实验研究[J]. 煤炭学报,2002,27(1):50-53. DUAN Kanglian,FENG Zengchao,ZHAO Yangsheng,et al. Testing study of methane drainage by bore and hydrau-lic-cutting seam from low permeability coal seam[J]. Journal of China Coal Society,2002,27(1):50-53.
[10] 林柏泉,吕有厂,李宝玉,等. 高压磨料射流割缝技术及其在防突工程中的应用[J]. 煤炭学报,2007,32(9):959-963. LIN Baiquan,LYU Youchang,Li Baoyu,et al. High pressure abrasive hydraulic cutting seam technology and its application in outbursts prevention[J]. Journal of China Coal Society,2007,32(9):959-963.
[11] 林柏泉,孟凡伟,张海滨,等. 基于区域瓦斯治理的钻割抽一体化技术及应用[J]. 煤炭学报,2011,36(1):75-79. LIN Baiquan,MENG Fanwei,ZHANG Haibin,et al. Re-gional gas control based on drilling slotting extracting integration technology[J]. Journal of China Coal Society,2011,36(1):75-79.
[12] 李忠华,张啸,尹亮亮. 高压水射流煤层切槽卸压效果的数值模拟[J]. 煤矿开采,2009,14(4):17. LI Zhonghua,ZHANG Xiao,YIN Liangliang. Numerical simulation for pressure-relief effect of coal slotting with high-pressure water jet[J]. Coal Mining Technology,2009,14(4):17.
[13] 唐巨鹏,李成全,潘一山. 水力割缝开采低渗透煤层气应力场数值模拟[J]. 天然气工业,2004,24(10):93-95. TANG Jupeng,LI Chengquan,PAN Yishan. Numeral simulation of stress field for low permeable coal-bed gas recovering with hydraulic cutting[J]. Natural Gas Industry,2004,24(10):93-95.
[14] 林柏泉,杨威,吴海进,等. 影响割缝钻孔卸压效果因素的数值分析[J]. 中国矿业大学学报,2010,26(5):455-458. LIN Baiquan,YANG Wei,WU Haijin,et al. A numeric analysis of the effects different factors have on slotted drilling[J]. Journal of China University of Mining & Technology,2010,26(5):455-458.
[15] 赵阳升,杨栋,胡耀青,等. 低渗透煤储层煤层气开采有效技术途径的研究[J]. 煤炭学报,2001,39(2):153-157. ZHAO Yangsheng,YANG Dong,HU Yaoqing,et al. Study on the effective technology way for mining methane in low permeability coal seam[J]. Journal of China Coal Society,2001,39(2):153-157.
[16] 刘佑荣,唐辉明. 岩体力学[M]. 武汉:中国地质大学出版社,2009:150-158. -
期刊类型引用(14)
1. 杨恒,魏建平,蔡玉波,张路路,刘勇. 后混合磨料空气射流喷嘴结构优化及破煤效果研究. 煤田地质与勘探. 2023(02): 114-126 . 本站查看
2. 王晨阳,李树刚,张永涛,郭毅,孙四清,陈冬冬,窦成义. 煤矿井下硬煤层顺层长钻孔分段压裂强化瓦斯抽采技术及应用. 煤田地质与勘探. 2022(08): 72-81 . 本站查看
3. 孙四清,李文博,张俭,陈冬冬,赵继展,郑凯歌,龙威成,王晨阳,贾秉义,杜天林,刘乐,杨欢,戴楠. 煤矿井下长钻孔分段水力压裂技术研究进展及发展趋势. 煤田地质与勘探. 2022(08): 1-15 . 本站查看
4. 孙四清,李文博. 井下碎软煤层顶板加砂分段压裂瓦斯高效抽采技术. 工矿自动化. 2022(12): 101-107 . 百度学术
5. 宋建民,邹永洺. 机械造穴增透技术在高瓦斯低透气性煤层的应用研究. 山西煤炭. 2022(04): 25-32 . 百度学术
6. 贾秉义,陈冬冬,吴杰,孙四清,王建利,赵继展,张杰. 煤矿井下顶板梳状长钻孔分段压裂强化瓦斯抽采实践. 煤田地质与勘探. 2021(02): 70-76 . 本站查看
7. 任梅青,吴斌. 水力压裂增透技术在南桐煤矿的应用研究. 煤矿现代化. 2021(01): 81-83+86 . 百度学术
8. 曾文平,杨文,谭其志,杨路通,翟盛锐. 水工隧洞过煤层超高压水力切割瓦斯增透技术研究. 人民长江. 2021(06): 117-122 . 百度学术
9. 汪北方,梁冰,刘维,张晶,迟海波,刘亚辉. 辛安煤矿1402工作面临空窄煤柱采掘响应及动态加固. 煤田地质与勘探. 2020(01): 145-153 . 本站查看
10. 安世岗,陈殿赋,张永民,孔德磊,李阳,张迪,王洋. 可控电脉冲波增透技术在低透气性煤层中的应用. 煤田地质与勘探. 2020(04): 138-145 . 本站查看
11. 张清田,时歌声,郭艳飞. 定向长钻孔整体水力压裂增透技术在赵固二矿的应用. 能源与环保. 2020(09): 13-17 . 百度学术
12. 龙威成,赵乐凯,陈冬冬,赵继展. 顺煤层定向长钻孔水力压裂煤层增透技术及试验研究. 河南理工大学学报(自然科学版). 2019(03): 10-15 . 百度学术
13. 张宏杰. 王坡煤矿掘进工作面水力增透技术研究及应用. 煤炭工程. 2019(S1): 68-72 . 百度学术
14. 王敏生,光新军. 高压水射流钻完井技术进展及发展思考. 煤田地质与勘探. 2017(05): 173-179+185 . 本站查看
其他类型引用(11)
计量
- 文章访问数: 72
- HTML全文浏览量: 14
- PDF下载量: 13
- 被引次数: 25