Mechanism and control technology of water inrush from shaft freezing holes after thawing
-
摘要: 针对冻结井筒解冻后频繁发生涌水灾害的情况,通过工程实例分析了冻结技术、井筒地层条件及解冻涌水特征。结果表明,涌水发生是由于解冻后冻结止水帷幕失效,冻结管周围地层介质渗透性增强,介质接触界面粘结强度降低而致界面缝隙扩大连通,使冻结钻孔连通含、隔水层而形成竖向导水通道,通道内高压水通过井筒薄弱部位发生涌水。采取在井筒外围适宜地层开挖环形巷道,在环形巷道内逐个切断冻结管并向冻结管内外注浆加固,最后将环形巷道用混凝土回填,形成人工隔水塞层。利用RFPA2D-Flow渗流耦合模型验证了该治理方案的可行性,且利用FLAC3D程序计算出环形巷道距离井壁7.50 m是最佳开凿位置。经该措施处理后的井筒涌水由原来的90 m3/h降低至2 m3/h,且井筒保持了稳定。Abstract: In order to solve water inrush disaster from shaft freezing holes, based on analyzing the characteristic of freezing sinking technology, stratum condition and water inrush status from freezing holes after thawing in some projects, it is indicated that four reasons result in water inrush. Firstly, water-resisting curtain is failure after stratum thawing; secondly, the stratum penetrability increases around freezing holes; thirdly, the interface adhesion strength is reduced, as a result, the aquifer and aquifuge are connected during freezing holes to form vertical channel for water; fourthly, the high confined water can spurt from weakest part of shaft. Calculating by RFPA2D-Flow seepage program, the project is workable, and the best radius is 7.50 m to dig circular impermeable tunnel by FLAC3D. digging circular tunnel at feasible stratum outside shaft and cutting off freezing pipe to grout, then backfilling the circular tunnel to form artificial aquifuge were taken, the quantity of water inrush was reduced from 90m3/h to 2m3/h, and the shaft was steady, reaching the aim of control and prevention of water inrush.
-
Keywords:
- freezing holes /
- shaft /
- water inrush /
- occurrence mechanism /
- circular impermeable tunnel
-
-
期刊类型引用(11)
1. 陶占盛,吉耘君,许超. 煤层气开发L型井水平井排采工程的研究. 中国煤层气. 2024(01): 12-16 . 百度学术
2. 拜阳. 武乡南区块深部煤层气储层特征及试采地质影响因素分析. 煤炭技术. 2024(09): 97-102 . 百度学术
3. 高玉巧,李鑫,何希鹏,陈贞龙,陈刚. 延川南深部煤层气高产主控地质因素研究. 煤田地质与勘探. 2021(02): 21-27 . 本站查看
4. 郭涛. 贵州省织金区块岩脚向斜煤层气富集高产规律研究. 煤田地质与勘探. 2021(02): 62-69 . 本站查看
5. 赵景辉,高玉巧,陈贞龙,郭涛,高小康. 鄂尔多斯盆地延川南区块深部地应力状态及其对煤层气开发效果的影响. 中国地质. 2021(03): 785-793 . 百度学术
6. 闫霞,徐凤银,聂志宏,康永尚. 深部微构造特征及其对煤层气高产“甜点区”的控制——以鄂尔多斯盆地东缘大吉地区为例. 煤炭学报. 2021(08): 2426-2439 . 百度学术
7. 王晴,杨飞,龚伟成,徐天鑫,李一超. 煤层气储层动态渗透率影响因素及排采管控措施. 煤田地质与勘探. 2020(02): 114-119 . 本站查看
8. 周亚彤. 延川南煤层气田动态特征和SEC动态储量评估方法研究. 油气藏评价与开发. 2020(04): 53-58 . 百度学术
9. 郑欢,许晓宏,王则,胡佳杰,雷琳,林燕. 延川南区块煤层气储层垂向非均质性特征及意义. 新疆地质. 2019(04): 555-559 . 百度学术
10. 原俊红,曹丽文,付玉通. 延川南地区深部煤层气U型水平井压裂参数优化设计. 煤田地质与勘探. 2018(05): 175-181 . 本站查看
11. 刘培勇. 基于文献大数据的我国煤层气研究现状与热点分析. 中国煤炭地质. 2018(11): 34-40 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 63
- HTML全文浏览量: 26
- PDF下载量: 2
- 被引次数: 13