煤层气储层动态渗透率影响因素及排采管控措施

王晴, 杨飞, 龚伟成, 徐天鑫, 李一超

王晴, 杨飞, 龚伟成, 徐天鑫, 李一超. 煤层气储层动态渗透率影响因素及排采管控措施[J]. 煤田地质与勘探, 2020, 48(2): 114-119. DOI: 10.3969/j.issn.1001-1986.2020.02.018
引用本文: 王晴, 杨飞, 龚伟成, 徐天鑫, 李一超. 煤层气储层动态渗透率影响因素及排采管控措施[J]. 煤田地质与勘探, 2020, 48(2): 114-119. DOI: 10.3969/j.issn.1001-1986.2020.02.018
WANG Qing, YANG Fei, GONG Weicheng, XU Tianxin, LI Yichao. Influencing factors of the dynamic permeability of CBM reservoir and CBM well drainage control measures[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 114-119. DOI: 10.3969/j.issn.1001-1986.2020.02.018
Citation: WANG Qing, YANG Fei, GONG Weicheng, XU Tianxin, LI Yichao. Influencing factors of the dynamic permeability of CBM reservoir and CBM well drainage control measures[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 114-119. DOI: 10.3969/j.issn.1001-1986.2020.02.018

 

煤层气储层动态渗透率影响因素及排采管控措施

基金项目: 

国家自然科学基金项目(41872178);国家科技重大专项课题(2017ZX05064-003)

详细信息
    作者简介:

    王晴,1993年生,女,河北任丘人,硕士,从事地震勘探与储层预测等研究.E-mail:earth9900@sohu.com

  • 中图分类号: TE371

Influencing factors of the dynamic permeability of CBM reservoir and CBM well drainage control measures

Funds: 

National Natural Science Foundation of China(41872178)

  • 摘要: 排采管控方法对煤层气储层动态渗透率具有显著影响。基于煤层气井不同排采阶段渗透率的主控因素,以提高和改善渗透率为目标,提出了针对性的排采对策。井底流压大于原始储层压力时,降压速度为0.03~0.05 MPa/d,可降低压裂液和速敏伤害;井底流压在原始地层压力和解吸压力之间时,以小于0.03 MPa/d的速度降压,避免加剧储层"渗透率漏斗";在解吸压力以上0.2~0.3 MPa时开始以0.01 MPa/d速度降压,在解吸压力附近稳压排水30 d,解吸后套压控制在0.2~0.3 MPa左右,避免两相流造成的水相渗透率下降;提产段通过变速提产强化基质收缩作用改善储层渗透率;稳产段主要通过单位压降增产量来确定合理的稳产产量,实现煤层气井长期高产稳产。现场试验表明,该方法取得了较好的应用效果。
    Abstract: The drainage and production control method has significant impact on the permeability of coalbed methane reservoir. Based on the main control factors of the permeability at different stages of drainage and production of coalbed methane wells, this paper puts forward targeted drainage and production countermeasures with the goal of improving the permeability. When the bottom-hole flow pressure was greater than the original reservoir pressure, the step-down velocity was between 0.08 and 0.1 MPa/d to reduce fracturing fluid and velocity-sensitive damage. When the bottom hole flow pressure was between reservoir pressure and desorption pressure, the pressure could be reduced at a rate less than 0.03 MPa/d to avoid aggravating the "permeability funnel" of the reservoir. When the desorption pressure was 0.2-0.3 MPa, the pressure decreased at the rate of 0.01 MPa/d. When the pressure was stabilized for 30 days near the desorption pressure, the casing pressure was controlled at about 0.2-0.3 MPa after desorption, so as to avoid the decrease of water-phase permeability caused by two-phase flow. The permeability of reservoir was improved by increasing matrix shrinkage with variable speed. In the stable production period, the reasonable stable production could be determined by increasing production per unit pressure drop to achieve long-term high and stable production of CBM wells. The field test shows that the method is effective.
  • [1] 胡秋嘉,贾慧敏,祁空军,等. 高煤阶煤层气井单相流段流压精细控制方法:以沁水盆地樊庄-郑庄区块为例[J]. 天然气工业,2018,38(9):76-81.

    HU Qiujia,JIA Huimin,QI Kongjun,et al. A fine control method of flowing pressure in single-phase flow section of high-rank CBM gas development wells:A case study from the Fanzhuang-Zhengzhuang block in the Qinshui basin[J]. Natural Gas Industry,2018,38(9):76-81.

    [2] 宋岩,柳少波,琚宜文,等. 含气量和渗透率耦合作用对高丰度煤层气富集区的控制[J]. 石油学报,2013,34(3):417-426.

    SONG Yan,LIU Shaobo,JU Yiwen,et al. Coupling between gas content and permeability controlling enrichment zones of high abundance coalbed methane[J]. Acta Petrolei Sinica,2013,34(3):417-426.

    [3] 付玉通,马建强,李永臣,等. 延川南区块深层煤层气井产能主控因素[J]. 煤田地质与勘探,2017,45(5):48-53.

    FU Yutong,MA Jianqiang,LI Yongchen,et al. Research on key factors of CBM well productivity in deep strata in block of south Yanchuan[J]. Coal Geology & Exploration,2017,45(5):48-53.

    [4] 魏迎春,李超,曹代勇,等. 煤层气开发中煤粉产出机理及管控措施[J]. 煤田地质与勘探,2018,46(2):68-73.

    WEI Yingchun,LI Chao,CAO Daiyong,et al. The output mechanism and control measures of the pulverized coal in coalbed methane development[J]. Coal Geology & Exploration,2018,46(2):68-73.

    [5] 乔康. 低煤阶煤储层敏感性分析及对煤层气排采的影响[J]. 煤矿安全,2018,49(5):14-16.

    QIAO Kang. Sensitivity analysis of low rank coal reservoir and its influence on coalbed methane drainage[J]. Safety in Coal Mines,2018,49(5):14-16.

    [6] 王钧剑. 煤岩应力敏感性实验及单相排水阶段非稳态渗流模型研究[D]. 北京:中国地质大学(北京),2013.

    WANG Junjian. Stress sensitivity experiments of coal samples and unsteady percolation model of water[D]. Beijing:China University of Geosciences(Beijing),2013.

    [7] 郭春华,周文,孙晗森,等. 考虑应力敏感性的煤层气井排采特征[J]. 煤田地质与勘探,2011,39(5):27-30.

    GUO Chunhua,ZHOU Wen,SUN Hansen,et al. The relationship between stress sensitivity and production of coalbed methane wells[J] Coal Geology & Exploration,2011,39(5):27-30.

    [8] 张双斌. 基于"三场"耦合的煤层气井排采控制理论与应用[D]. 焦作:河南理工大学,2014.

    ZHANG Shuangbin. Drainage controlling theory and application in coalbed methane well based on "Three Fields" coupling[D]. Jiaozuo:Henan Polytechnic University,2014.

    [9] 许科,崔彬. 等温吸附曲线在煤层气排采中的应用:以织金区块为例[J]. 油气藏评价与开发,2015,5(6):73-75.

    XU Ke,CUI bin. Application of isothermal adsorption curves in coalbed methane production:A case study in Zhijin block[J]. Reservoir Evaluation and Development,2015,5(6):73-75.

    [10] 杨秀春. 煤层气排采过程中产能与物性变化动态耦合研究[D]. 北京:中国矿业大学(北京),2011. YANG Xiuchun. The research of capacity and gas-bearing permeability change dynamic with coupling in the process of coal-bed methane's discharging and mining[D]. Beijing:China University of Mining & Technology(Beijing),2011.
    [11] 陈刚,秦勇,杨青,等. 不同煤阶煤储层应力敏感性差异及其对煤层气产出的影响[J]. 煤炭学报,2014,39(3):504-509.

    CHEN Gang,QIN Yong,YANG Qing,et al. Different stress sensitivity of different coal rank reservoir permeability and its effect on the coalbed methane output[J]. Journal of China Coal Society,2014,39(3):504-509.

    [12] 孟召平,张纪星,刘贺,等. 考虑应力敏感性的煤层气井产能模型及应用分析[J]. 煤炭学报,2014,39(4):593-599.

    MENG Zhaoping,ZHANG Jixing,LIU He,et al. Productivity model of CBM wells considering the stress sensitivity and its application analysis[J]. Journal of China Coal Society,2014,39(4):593-599.

    [13] 刘世奇,桑树勋,李梦溪,等. 沁水盆地南部煤层气井网排采压降漏斗的控制因素[J]. 中国矿业大学学报,2012,41(6):943-950.

    LIU Shiqi,SANG Shuxun,LI Mengxi,et al. Control factors of coalbed methane well depressurization cone under drainage well network in southern Qinshui basin[J]. Journal of China University of Mining & Technology,2012,41(6):943-950.

    [14] 赵金,张遂安. 煤层气排采储层压降传播规律研究[J]. 煤炭科学技术,2012,40(10):65-68.

    ZHAO Jin,ZHANG Sui'an. Study on pressure drop transmission law of coal bed Methane drainage reservoir stratum[J]. Coal Science and Technology,2012,40(10):65-68.

    [15] 倪小明,张崇崇,王延斌,等. 气水两相流阶段煤基质收缩量预测方法[J]. 煤炭学报,2014,39(增刊1):174-178.

    NI Xiaoming,ZHANG Chongchong,WANG Yanbin,et al. Prediction of coal matrix shrinkage in gas-water two-phase flow stage[J]. Journal of China Coal Society,2014,39(S1):174-178.

计量
  • 文章访问数:  192
  • HTML全文浏览量:  23
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-06
  • 修回日期:  2019-11-13
  • 发布日期:  2020-04-24

目录

    /

    返回文章
    返回