-
摘要:
为了解决现有水平定向钻进导向方法测量精度低,定位深度浅,测量数据不连续以及受磁场干扰影响大的问题,提出一种基于磁信标的水平定向钻进导向定位方法,实现水平定向钻进的位置和姿态测量;设计了基于三阶磁梯度张量的测量阵列,通过仿真验证该方法可以消除地磁场的影响,实现位置测量;依据惯性导航理论,利用MEMS传感器、测量阵列位置信息和零速信息进行多源数据融合,对惯性导航解算出的姿态误差进行估计和修正,提高姿态测量精度。通过地面位置测量实验对基于三阶磁梯度张量的位置测量算法进行验证,位置测量结果的平均相对误差为4.57%;通过地面姿态测量实验对多源数据融合算法进行验证,结果表明,倾角误差在0.3°以内,工具面角误差在0.7°以内,方位角的误差值在1°以内,证明了提出的姿态测量算法的准确性和有效性。研究成果可以提高非开挖水平定向钻进适用范围、实时性和定位精度,为水平定向钻进导向技术自动化提供了理论基础。
Abstract:In order to solve the problems of existing horizontal directional drilling (HDD) guidance methods, including low measurement accuracy, shallow positioning distance, discontinuous measurement data and great interference by magnetic field, a magnetic beacon-based horizontal directional drilling guidance and positioning method was proposed to achieve the position and attitude measurement of HDD. Meanwhile, a measurement array based on the third-order magnetic gradient tensor was designed, which verifies through simulation that the method could eliminate the influence of the geomagnetic fields and achieve the position measurement. In order to improve the attitude measurement accuracy, the multisource data fusion was performed with MEMS sensors, measurement array position information and zero velocity information based on the inertial navigation theory to estimate and correct the attitude errors solved by inertial navigation. Besides, the position measurement algorithm based on the third-order magnetic gradient tensor was verified by ground-based position measurement experiments, with the average relative error of 4.57% in the position measurement results. In addition, the multi-source data fusion algorithm was verified by ground attitude measurement experiments. The results show that the error is within 0.3° for the inclination angle, within 0.7° for the tool face angle, and within 1° for the azimuth angle. This indicates the accuracy and effectiveness of the position measurement algorithm based on the third-order magnetic gradient tensor and the attitude measurement algorithm with multi-source data fusion proposed in this paper. The research results could improve the applicable range, real-time performance and positioning accuracy of trenchless horizontal directional drilling, thereby providing the theoretical basis for the automation of HDD guidance technology.
-
-
表 1 磁信标空间位置磁场强度
Table 1 Magnetic field strength at the spatial position of the magnetic beacon
距离中心点位置/m 径向场强/nT 轴向场强/nT 10 125.77 54 8 423.97 118.81 6 1204.5 459.3 4 3340.4 1000.1 2 93917 24923 表 2 手持式激光测距仪技术参数
Table 2 Technical parameters of the handheld laser range finder
参数 数值 测量距离/m 0~100.0 30 m内测量精度/mm ±1.5 最小显示单位/mm 1 激光等级 不低于Ⅱ 激光点直径精度/(mm·m−1) 0.6 表 3 测量阵列中磁强计技术参数
Table 3 Technical parameters of the magnetometer in the measurement array
参数 参数值 动态范围/
Gauss±13 比例系数
稳定性/% F·S0.5 非线性/
% F·S1.0 偏移量/
mGauss1.0 表 4 各轴误差
Table 4 Error of various axes
位置测量 最大误差/
m相对误差/
%平均误差/
m平均相对误差/
%$ x $轴 0.278 9.27 0.135 4.52 y轴 0.702 7.02 0.306 3.06 $ {\textit{z}} $轴 0.261 11.86 0.135 6.14 表 5 测量阵列中加速度计和陀螺仪技术参数
Table 5 Technical parameters of accelerometer and gyroscope in the measurement array
陀螺仪参数 数值 加速度计参数 数值 带宽/Hz 100 带宽/Hz 100 零偏稳定性/[(°)·hr−1] 12 零偏稳定性/10−6g 30 偏移量/[(°)·s−1] 0.003 偏移量/10−3g 0.1 随机游走/[(°)·hr−1/2] 0.2 随机游走/(10−6g·hr−1/2) 340 动态范围/[(°)·s−1] ±300 动态范围/g ±8 表 6 实验中轨迹参数设置
Table 6 Trajectory parameter settings in the experiments
时间/s 方位角/(°) 工具面角/(°) 倾角/(°) 0~40 0 0 −16 40~70 0 0 0 70~100 15 0 0 100~120 −5 0 0 120~140 −20 0 0 140~165 0 0 0 165~180 0 0 16 -
[1] 姚宁平,王力,张金宝,等. 煤矿井下连续管钻进管柱分析及射流钻进实验[J]. 煤田地质与勘探,2023,51(1):298−308. YAO Ningping,WANG Li,ZHANG Jinbao,et al. Analysis and jet drilling test of coiled tubing drilling string for underground coal mine[J]. Coal Geology & Exploration,2023,51(1):298−308.
[2] PATINO–RAMIREZ F,LAYHEE C,ARSON C. Horizontal directional drilling (HDD) alignment optimization using ant colony optimization[J]. Tunnelling and Underground Space Technology,2020,103:103450. DOI: 10.1016/j.tust.2020.103450
[3] 王小波. 无线电磁波随钻测量系统姿态精度的影响因素分析[J]. 煤田地质与勘探,2021,49(6):258−264. WANG Xiaobo. Factors affecting the attitude accuracy of wireless electromagnetic wave MWD system[J]. Coal Geology & Exploration,2021,49(6):258−264.
[4] 刘金祯,金键,陈雪华,等. 地面信标控向系统在海河穿越中的应用[J]. 石油工程建设,2003,29(6):58−60. LIU Jinzhen,JIN Jian,CHEN Xuehua,et al. Application of ground beacon directional control system in pipeline crossing through Haihe River[J]. Petroleum Engineering Construction,2003,29(6):58−60.
[5] 孙平贺,刘伟胜,杨涵涵,等. 中国非开挖水平定向钻进装备与技术研究应用进展[J]. 工程科学学报,2022,44(1):122−130. SUN Pinghe,LIU Weisheng,YANG Hanhan,et al. Progress in research and applications of trenchless horizontal directional drilling equipment and technology in China[J]. Chinese Journal of Engineering,2022,44(1):122−130.
[6] LIU Tao,WANG Boxiong,CUI Yuanyuan,et al. Direction and position measurement in HDD using two magnetic fields[J]. Sensors and Actuators A:Physical,2012,185:168−172. DOI: 10.1016/j.sna.2012.08.005
[7] ZHANG Yuexin. A fusion methodology to bridge GPS outages for INS/GPS integrated navigation system[J]. IEEE Access,2019,7:61296−61306. DOI: 10.1109/ACCESS.2019.2911025
[8] 常帅,付晓梅,张翠翠,等. 基于磁信标的水下SLAM方法[J]. 水下无人系统学报,2019,27(3):277−283. CHANG Shuai,FU Xiaomei,ZHANG Cuicui,et al. An underwater SLAM approach using magnetic beacons[J]. Journal of Unmanned Undersea Systems,2019,27(3):277−283.
[9] ZHENG Yuanxun,LI Qinghua,WANG Changhong,et al. Magnetic–based positioning system for moving target with feature vector[J]. IEEE Access,2020,8:105472−105483. DOI: 10.1109/ACCESS.2020.3000305
[10] 石智军,许超,李泉新. 煤矿井下近水平随钻测量定向钻孔轨迹设计与计算方法[J]. 煤田地质与勘探,2015,43(4):112−116. SHI Zhijun,XU Chao,LI Quanxin. Trajectory design and calculation of nearly horizontal MWD directional borehole in underground coal mine[J]. Coal Geology & Exploration,2015,43(4):112−116.
[11] 吕俊伟,迟铖,于振涛,等. 磁梯度张量不变量的椭圆误差消除方法研究[J]. 物理学报,2015,64(19):190701. DOI: 10.7498/aps.64.190701 LYU Junwei,CHI Cheng,YU Zhentao,et al. Research on the asphericity error elimination of the invariant of magnetic gradient tensor[J]. Acta Physica Sinica,2015,64(19):190701. DOI: 10.7498/aps.64.190701
[12] LEE K M,LI Min. Magnetic tensor sensor for gradient–based localization of ferrous object in geomagnetic field[J]. IEEE Transactions on Magnetics,2016,52(8):4002610.
[13] 李光,随阳轶,刘丽敏,等. 基于差分的磁偶极子单点张量定位方法[J]. 探测与控制学报,2012,34(5):50−54. LI Guang,SUI Yangyi,LIU Limin,et al. Magnetic dipole single–point tensor positioning based on the difference method[J]. Journal of Detection & Control,2012,34(5):50−54.
[14] LI You,ZHUANG Yuan,ZHANG Peng,et al. An improved inertial/wifi/magnetic fusion structure for indoor navigation[J]. Information Fusion,2017,34:101−119. DOI: 10.1016/j.inffus.2016.06.004
[15] 张浩. 非开挖管道定向穿越技术[J]. 中国石油和化工标准与质量,2012(8):115. ZHANG Hao. Trenchless pipeline directional crossing technology[J]. China Petroleum and Chemical Standard and Quality,2012(8):115.
[16] 赵玉,赵忠,范毅. 零速修正技术在车载惯性导航中的应用研究[J]. 压电与声光,2012,34(6):843−847. ZHAO Yu,ZHAO Zhong,FAN Yi. Study on application of zero velocity update technology to inertial navigation system[J]. Piezoelectrics & Acoustooptics,2012,34(6):843−847.
[17] LIU Xixiang,WANG Songbing,ZHANG Tongwei,et al. A zero–velocity detection method with transformation on generalized likelihood ratio statistical curve[J]. Measurement,2018,127:463−471. DOI: 10.1016/j.measurement.2018.05.113
[18] ZHANG Peng,LI You,ZHUANG Yuan,et al. Multi–level information fusion with motion constraints:Key to achieve high–precision gait analysis using low–cost inertial sensors[J]. Information Fusion,2023,89:603−618. DOI: 10.1016/j.inffus.2022.09.009
[19] 黄欣,熊智,许建新,等. 基于零速/航向自观测/地磁匹配的行人导航算法研究[J]. 兵工学报,2017,38(10):2031−2040. DOI: 10.3969/j.issn.1000-1093.2017.10.020 HUANG Xin,XIONG Zhi,XU Jianxin,et al. Research on pedestrian navigation algorithm based on zero velocity update/heading error self–observation/geomagnetic matching[J]. Acta Armamentarii,2017,38(10):2031−2040. DOI: 10.3969/j.issn.1000-1093.2017.10.020
[20] 燕斌,程建远,蔡远利,等. 基于MEMS陀螺的矿用新型钻机开孔定向仪研制[J]. 煤田地质与勘探,2018,46(6):187−192. YAN Bin,CHENG Jianyuan,CAI Yuanli,et al. Development of a new type of drilling orientation device based on MEMS gyroscope[J]. Coal Geology & Exploration,2018,46(6):187−192.
-
期刊类型引用(25)
1. 郑剑,陈陆望,张杰,张苗,郑忻,胡永胜. 贝叶斯突水水源判别与反向水文地球化学模拟的含水层水力分析. 合肥工业大学学报(自然科学版). 2025(02): 203-211 . 百度学术
2. 蒋欣静,李仲夏,万军伟,成建梅,王志明,王玲,王铭. 柳家村隧洞水化学特征分析及涌水水源判别方法研究. 安全与环境工程. 2024(04): 158-169 . 百度学术
3. 张强,胡志伟,王毛毛,周成号. 基于主成分自组织神经网络法的测井曲线分层技术. 地质与勘探. 2024(05): 1013-1020 . 百度学术
4. 施龙青,曲兴玥,韩进. 黄土梁峁地貌矿井水水质时空变异评估与关键控制因子水源识别. 煤田地质与勘探. 2023(02): 195-206 . 本站查看
5. 陈陆望,胡永胜,张杰,张苗,郑剑,郑忻,张媛媛,蔡欣悦,武明辉. 华北型煤田水文地球化学勘探关键技术研究进展. 煤田地质与勘探. 2023(02): 207-219 . 本站查看
6. 赵世毫,高林,陈原望,蒋明,向天麟,申业兴,许帅. 基于水化学特征分析的近地表井壁涌水来源识别技术. 矿业研究与开发. 2023(11): 150-156 . 百度学术
7. 张苗,陈陆望,姚多喜,张杰. 宿县矿区石炭系太灰地下水化学特征及水岩相互作用. 合肥工业大学学报(自然科学版). 2022(03): 396-405 . 百度学术
8. 苏玮,姜春露,查君珍,郑刘根,谢华东,黄文迪,陈园平. 基于客观组合权-改进集对分析模型的矿井突水水源识别. 煤炭科学技术. 2022(04): 156-164 . 百度学术
9. 张胜军,丁亚恒,姜春露,李明,郑刘根. 基于水化学和氯同位素的煤矿矿井水来源识别与解析. 煤炭工程. 2022(06): 123-127 . 百度学术
10. 毛志勇,崔鹏杰,黄春娟,韩榕月. KPCA-CS-SVM下的矿井突水水源判别模型. 辽宁工程技术大学学报(自然科学版). 2021(02): 104-111 . 百度学术
11. 满孝全,魏久传,谢道雷,谢春雷. 基于水化学特征分析的突水水源判别方法. 中国科技论文. 2021(01): 76-81+90 . 百度学术
12. 朱敬忠,李凌,杨森. 基于因子分析的突水水源类型判别的研究. 矿业安全与环保. 2021(02): 87-91+96 . 百度学术
13. 施亚丽,吴基文,翟晓荣,王广涛,洪荒,毕尧山. 采动影响下皖北恒源煤矿八含水化学特征研究. 安徽理工大学学报(自然科学版). 2021(01): 31-40 . 百度学术
14. 苏俏俏,黄平华,丁风帆,胡永胜,郜鸿飞. 基于Piper-PCA-Fisher模型的矿井突水水源识别. 能源与环保. 2021(10): 122-127 . 百度学术
15. 李凌,胡友彪,刘瑜,琚棋定. 基于多元统计与Bayes判别模型的水源判别. 安徽理工大学学报(自然科学版). 2021(06): 25-31 . 百度学术
16. 刘小贺. 主成分-距离水质识别水源模型主成分的选取. 地下水. 2020(02): 23-26 . 百度学术
17. 姜子豪,胡友彪,琚棋定,周露,张淑莹. 矿井突水水源判别方法. 工矿自动化. 2020(04): 28-33 . 百度学术
18. 马济国,姜春露,朱赛君,谢毫,毕波,郑刘根. 基于主成分分析的潘谢矿区突水水源Fisher判别模型. 煤炭技术. 2020(09): 132-134 . 百度学术
19. 张靖苑. 基于主成分分析和随机配置网络的矿井突水水源判别方法研究. 煤炭工程. 2020(S2): 101-104 . 百度学术
20. 题正义,张峰,秦洪岩,朱志洁. 基于板壳和断裂力学理论的上覆采空区积水危险性判定技术. 煤田地质与勘探. 2019(01): 138-143 . 本站查看
21. 刘国伟,马凤山,郭捷,杜云龙,侯成录,李威. 多元统计分析在滨海矿区水源识别中的应用——以三山岛金矿为例. 黄金科学技术. 2019(02): 207-215 . 百度学术
22. 董东林,李祥,林刚,卞建玲,曹成龙,吴恒. 突水水源的独立性权–模糊可变理论识别模型. 煤田地质与勘探. 2019(05): 48-53 . 本站查看
23. 张宇,彭琪,曾开帅,唐金平,何文君,张强. Bayes判别理论在陇西黄土高原地区地下水化学分类中的应用. 甘肃水利水电技术. 2019(10): 1-5 . 百度学术
24. 邓松松. 超化煤矿突水灾害地质条件分析及防治措施. 能源与节能. 2018(06): 38-39 . 百度学术
25. 琚棋定,胡友彪,张淑莹. 基于主成分分析与贝叶斯判别法的矿井突水水源识别方法研究. 煤炭工程. 2018(12): 90-94 . 百度学术
其他类型引用(16)