水射流自驱钻头自进能力影响因素研究

刘勇, 代硕, 魏建平, 张宏图, 苑永旺, 郭鑫辉, 郜英俊

刘勇,代硕,魏建平,等. 水射流自驱钻头自进能力影响因素研究[J]. 煤田地质与勘探,2023,51(5):198−206. DOI: 10.12363/issn.1001-1986.22.09.0691
引用本文: 刘勇,代硕,魏建平,等. 水射流自驱钻头自进能力影响因素研究[J]. 煤田地质与勘探,2023,51(5):198−206. DOI: 10.12363/issn.1001-1986.22.09.0691
LIU Yong,DAI Shuo,WEI Jianping,et al. Study on factors influencing the self-propelling capacity of self-propelled water jet drill bits[J]. Coal Geology & Exploration,2023,51(5):198−206. DOI: 10.12363/issn.1001-1986.22.09.0691
Citation: LIU Yong,DAI Shuo,WEI Jianping,et al. Study on factors influencing the self-propelling capacity of self-propelled water jet drill bits[J]. Coal Geology & Exploration,2023,51(5):198−206. DOI: 10.12363/issn.1001-1986.22.09.0691

 

水射流自驱钻头自进能力影响因素研究

基金项目: 国家自然科学基金项目(52174170,52274192);河南省高校科技创新人才项目(21HASTIT009)
详细信息
    作者简介:

    刘勇,1984年生,男,山东临沂人,博士,教授,从事射流理论与技术、煤层气开发等方面的研究. E-mail:yoonliu@hpu.edu.cn

    通讯作者:

    魏建平,1971年生,男,河南遂平人,博士,教授,从事煤矿瓦斯灾害防治与利用等方面的研究. E-mail: weijianping@hpu.edu.cn

  • 中图分类号: TD712

Study on factors influencing the self-propelling capacity of self-propelled water jet drill bits

  • 摘要:

    管道内流场结构特性是影响自驱钻头自进力和解堵除垢能力的关键因素。针对多股射流共同作用下管道内流场变化影响自进力和返水阻力的问题,基于FLUENT数值分析不同条件下管道内流场变化,得到后置喷嘴角度、转速、环空比和系统压力对自进力的影响规律,揭示综合摩擦因素理论值存在误差的原因,通过正交数值模拟明确自进力影响因素的主次关系。基于自进力测试实验装置,开展不同条件下自进力测试实验,验证数值模拟结果的正确性。结果表明:涡旋挤压碰撞作用和射流卷吸作用导致自驱钻头前后产生压力梯度,从而提高自进力。后置喷嘴倾角由20°增加至45°,壁面射流逆流速度由6.2 m/s增加至14.5 m/s,涡旋碰撞挤压后压力峰值由68.47 kPa增加至80.79 kPa,导致压差力增大。提高转速能够减小一次涡旋范围,当涡旋在旋转体区域发生碰撞挤压时,旋转体所受压差力增加。提高转速、系统压力或减小环空比均会增强后置射流的封隔作用,从而提高自进力。由于理论计算返水阻力时忽略了涡旋区的影响,因此综合摩擦因数理论值需要修正。环空比、系统压力、转速和后置喷嘴倾角的极差分别为300.07、111.87、60.42、36.32,影响因素主次关系为:环空比>系统压力>转速>后置喷嘴倾角。本研究可为自驱钻头结构优化设计、提高自驱钻头的自进力提供参考。

    Abstract:

    The structural characteristics of inner flow field in a pipeline are the key factors influencing the self-propelling capacity and descaling-unblocking capability of the self-propelled drill bit. To address the problem concerning the effect of the changes in the inner flow field of a pipeline under the joint action of multiple jets on the self-propelling force and the resistance to water backflow, the changes of inner flow field in the pipeline under different conditions were numerically analyzed based on FLUENT, and thus the influence law of the angle of rear nozzle, the rotational speed, the annular ratio and the system pressure on the self-propelling force was defined, revealing the reasons for the error of the theoretical value of the integrated friction coefficient. Besides, the primary and secondary relationships of the factors influencing the self-propelling force were clarified through orthogonal numerical simulations. Then, the self-propelling force testing experiments were carried out under different conditions with the self-propelling force test device to verify the correctness of the numerical simulation results. As shown by the results, the action of vortex squeeze collision and jet suction leads to a pressure gradient in front of and behind the self-propelled drill bits, thus increasing the self-propelling force. The angle of the rear nozzle is increased from 20° to 45°, the countercurrent velocity of wall jet is increased from 6.2 m/s to 14.5 m/s and the peak pressure after vortex collision extrusion is increased from 68.47 kPa to 80.79 kPa, resulting in an increase in differential pressure. Increasing the rotational speed could reduce the range of primary vortex, while the differential pressure applied on the rotating body increases during the collision and squeeze of vortex in the rotating body area. Increasing the rotational speed and the system pressure, or reducing the annular ratio, will increase the isolation effect of the rear jet, thus increasing the self-propelling force. The theoretical value of the integrated friction coefficient needs to be corrected as the effect of the vortex zone is ignored in the theoretical calculation of the resistance to water backflow. The extreme differences of the annular ratio, system pressure, rotational speed and angle of the rear nozzle are 300.07, 111.87, 60.42 and 36.32 respectively, and the main relationships of the influencing factors are: annular ratio > system pressure > rotational speed > angle of the rear nozzle. Generally, the research in this paper could provide a reference for the optimization design in structure and the improvement of self-propelling capacity of the self-propelled drill bits.

  • 图  1   水射流自驱钻头修复钻孔装置

    Fig.  1   Borehole restoration device of self-propelled water jet drill bit

    图  2   模型及网格划分

    Fig.  2   Model and meshing

    图  3   管道内流场

    Fig.  3   Inner flow field in the pipeline

    图  4   不同后置喷嘴倾角自进力和返水阻力变化

    Fig.  4   Change of self-propelling force and resistance to water backflow at different angles of rear nozzle

    图  5   不同后置喷嘴倾角流线对比

    Fig.  5   Comparison of streamlines at different angles of rear nozzle

    图  6   不同后置喷嘴倾角条件下喷头上方环空压力对比

    Fig.  6   Comparison of annular pressure above nozzle at different angles of rear nozzle

    图  7   不同转速条件下射流轴心位置速度变化

    Fig.  7   Change of velocity of jet at the axis position at different rotational speeds

    图  8   不同转速流线对比

    Fig.  8   Comparison of streamlines at different rotational speeds

    图  9   不同环空比自进力变化

    Fig.  9   Change of self-propelling force at different annular ratios

    图  10   不同环空比压力变化

    Fig.  10   Pressure change at different annular ratios

    图  11   不同压力条件系统受力变化

    Fig.  11   Change of system forces under different pressure conditions

    图  12   旋转体上方环空压力变化

    Fig.  12   Pressure change in the annulus above the rotating body

    图  13   自进力测试实验装置

    Fig.  13   Experimental device for self-propelling force testing

    图  14   转速测试装置

    Fig.  14   Rotational speed testing device

    图  15   自进力实验值与仿真值对比

    Fig.  15   Comparison of experimental and simulated values of self-propelling forces

    表  1   多因素逐项数值模拟方案

    Table  1   Scheme of multi-factor numerical simulation by item

    编号 后置喷嘴倾角/(°) 转速/(r·min−1) 环空比 压力/MPa
    1 20 600 0.63 25
    2 25 600 0.63 25
    3 30 600 0.63 25
    4 35 600 0.63 25
    5 40 600 0.63 25
    6 45 600 0.63 25
    7 20 0 0.63 25
    8 20 300 0.63 25
    9 20 900 0.63 25
    10 20 1200 0.63 25
    11 20 900 0.44 25
    12 20 900 0.53 25
    13 20 900 0.69 25
    14 20 900 0.75 25
    15 20 900 0.53 10
    16 20 900 0.53 15
    17 20 900 0.53 20
    下载: 导出CSV

    表  2   正交数值模拟因素水平

    Table  2   Factors and levels of orthogonal numerical simulation

    水平 系统压力/MPa 后置喷嘴倾角/(°) 转速/(r·min−1) 环空比
    1 15 20 600 0.44
    2 20 25 900 0.53
    3 25 35 1 200 0.63
    下载: 导出CSV

    表  3   正交数值模拟方案

    Table  3   Orthogonal numerical simulation scheme

    编号 系统压力/MPa 后置喷嘴倾角/(°) 转速/(r·min−1) 环空比
    1 15 20 600 0.44
    2 15 25 900 0.53
    3 15 35 1 200 0.63
    4 20 20 900 0.63
    5 20 25 1 200 0.44
    6 20 35 600 0.53
    7 25 20 1 200 0.53
    8 25 25 600 0.63
    9 25 35 900 0.44
    下载: 导出CSV

    表  4   正交数值模拟结果

    Table  4   Orthogonal numerical simulation results

    编号/参数 压力/MPa 后置喷嘴
    倾角/(°)
    转速/(r·min−1) 环空比 自进力/N
    1 15 20 600 0.44 124.16
    2 15 25 900 0.53 60.92
    3 15 35 1 200 0.63 32.17
    4 20 20 900 0.63 43.07
    5 20 25 1 200 0.44 146.74
    6 20 35 600 0.53 67.00
    7 25 20 1 200 0.53 123.35
    8 25 25 600 0.63 50.68
    9 25 35 900 0.44 155.09
    K1 217.25 290.58 241.84 425.99
    K2 256.81 258.34 259.08 251.27
    K3 329.12 254.26 302.26 125.92
    极差 111.87 36.32 60.42 300.07
    下载: 导出CSV
  • [1] 董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21−31.

    DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21−31.

    [2] 刘勇,代硕,魏建平,等. 低压磨料空气射流破硬岩规律及特征实验研究[J]. 岩石力学与工程学报,2022,41(6):1172−1182.

    LIU Yong,DAI Shuo,WEI Jianping,et al. Experimental study on hard rock breaking laws and characteristics by low−pressure abrasive air jet[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(6):1172−1182.

    [3] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报,2016,41(1):1−6.

    YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society,2016,41(1):1−6.

    [4] 张超林,王恩元,王奕博,等. 近20年我国煤与瓦斯突出事故时空分布及防控建议[J]. 煤田地质与勘探,2021,49(4):134−141.

    ZHANG Chaolin,WANG Enyuan,WANG Yibo,et al. Spatial–temporal distribution of outburst accidents from 2001 to 2020 in China and suggestions for prevention and control[J]. Coal Geology & Exploration,2021,49(4):134−141.

    [5] 梁道富,曹建明,代茂,等. 贵州青龙煤矿碎软煤层区域瓦斯递进式抽采技术[J]. 煤田地质与勘探,2020,48(5):48−52.

    LIANG Daofu,CAO Jianming,DAI Mao,et al. Progressive gas extraction technology in broken soft coal seam of Qinglong Coal Mine,Guizhou Province[J]. Coal Geology & Exploration,2020,48(5):48−52.

    [6] 邹士超,辛嵩. 煤层瓦斯钻孔有效抽采半径研究[J]. 中国安全科学学报,2020,30(4):53−59.

    ZOU Shichao,XIN Song. Effective extraction radius of gas drilling in coal seam[J]. China Safety Science Journal,2020,30(4):53−59.

    [7] 齐庆新,潘一山,舒龙勇,等. 煤矿深部开采煤岩动力灾害多尺度分源防控理论与技术架构[J]. 煤炭学报,2018,43(7):1801−1810.

    QI Qingxin,PAN Yishan,SHU Longyong,et al. Theory and technical framework of prevention and control with different sources in multi−scales for coal and rock dynamic disasters in deep mining of coal mines[J]. Journal of China Coal Society,2018,43(7):1801−1810.

    [8] 刘勇,李志飞,魏建平,等. 磨料空气射流破煤冲蚀模型研究[J]. 煤炭学报,2020,45(5):1733−1742.

    LIU Yong,LI Zhifei,WEI Jianping,et al. Erosion model of abrasive air jet used in coal breaking[J]. Journal of China Coal Society,2020,45(5):1733−1742.

    [9] 刘勇,魏建平,王登科,等. 磨料气体射流冲蚀磨损岩石特征分析[J]. 煤炭学报,2018,43(11):3033−3041.

    LIU Yong,WEI Jianping,WANG Dengke,et al. Erosive wear characteristic of rock impacted by abrasive gas jet[J]. Journal of China Coal Society,2018,43(11):3033−3041.

    [10] 孙龙德,江同文,王凤兰,等. 关于油田寿命的思考[J]. 石油学报,2021,42(1):56−63.

    SUN Longde,JIANG Tongwen,WANG Fenglan,et al. Thoughts on the development life of oilfield[J]. Acta Petrolei Sinica,2021,42(1):56−63.

    [11]

    LANDERS C. Method of and apparatus for horizontal well drilling: US06125949A[P]. 2000-10-03.

    [12] 刘玉洲,陆庭侃,柳晓莉. 煤层气井超短半径自进式水平钻井技术研究[J]. 天然气工业,2006,26(2):69−72.

    LIU Yuzhou,LU Tingkan,LIU Xiaoli. Self−feeding horizontal drilling technology with super−short radius for coal−bed methane wells[J]. Natural Gas Industry,2006,26(2):69−72.

    [13] 刘勇,梁博臣,何岸,等. 自进式旋转钻头钻孔修复理论及关键参数研究[J]. 中国安全生产科学技术,2016,12(2):39−44.

    LIU Yong,LIANG Bochen,HE An,et al. Research on theory and technical parameter of borehole restoration for self−propelling and rotating drill[J]. Journal of Safety Science and Technology,2016,12(2):39−44.

    [14] 贺乐昌. 水力深穿透射孔自进旋转喷头关键参数研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    HE Lechang. Study on key parameters of self–propelled rotatory nozzle for water−jet deep penetrating perforation[D]. Harbin: Harbin Institute of Technology, 2009.

    [15] 董惠娟,白良浩,吕岩,等. 自进式高压水射流破岩数值模拟分析[J]. 石油机械,2010,38(12):29−33.

    DONG Huijuan,BAI Lianghao,LYU Yan,et al. A numerical simulation analysis of self–propelled high–pressure water jet rock breaking[J]. China Petroleum Machinery,2010,38(12):29−33.

    [16] 郭瑞昌,李根生,黄中伟,等. 多孔式射流钻头流场数值模拟研究[J]. 流体机械,2010,38(4):13−17.

    GUO Ruichang,LI Gensheng,HUANG Zhongwei,et al. Numerical simulation study on flow field of multi–hole jet bit[J]. Fluid Machinery,2010,38(4):13−17.

    [17] 刘勇, 代硕, 魏建平, 等. 自进式钻头钻孔修复运动方程及关键参数研究[J/OL]. 河南理工大学学报 (自然科学版), 2022: 1–11 [2023-01-06]. http://kns.cnki.net/kcms/detail/41.1384.N.20220530.1046.002.html.

    LIU Yong, DAI Shuo, WEI Jianping, et al. Research on equations of motion and technical parameter of borehole restoration for self−propelling drill[J/OL]. Journal of Henan Polytechnic University (Natural Science), 2022: 1–11[2023-01-06]. http://kns.cnki.net/kcms/detail/41.1384.N.20220530.1046.002.html.

    [18] 祝效华,陈伟. 自进式喷头自进力影响因素分析及参数优化[J]. 水动力学研究与进展,2018,33(1):89−97.

    ZHU Xiaohua,CHEN Wei. Analysis on influencing factors of self−propelled force and parameters optimization of the jet nozzle[J]. Chinese Journal of Hydrodynamics,2018,33(1):89−97.

    [19]

    ZHANG X,LIU X,GENG D,et al. Numerical simulation on the flow field of self–propelled multi–orifices nozzle for ultra–short radius radial jet drilling[J]. International Journal of Oil,Gas and Coal Technology,2018,17(1):1−11. DOI: 10.1504/IJOGCT.2018.089338

    [20] 莫丽,王军. 自推进喷嘴井筒内流场数值模拟[J]. 中南大学学报 (自然科学版),2015,46(10):3656−3662.

    MO Li,WANG Jun. Numerical simulation for wellbore flow field of self–propelled nozzle[J]. Journal of Central South University (Science and Technology),2015,46(10):3656−3662.

    [21]

    PENG Haojun,ZHANG Ping. Numerical simulation of high speed rotating waterjet flow field in a semi enclosed vacuum chamber[J]. Computer Modeling in Engineering & Sciences,2018,114(1):59−73.

    [22] 张欣玮,汤积仁,卢义玉,等. 淹没条件下水射流涡旋特性大涡模拟及实验研究[J]. 中国石油大学学报 (自然科学版),2015,39(3):98−104.

    ZHANG Xinwei,TANG Jiren,LU Yiyu,et al. Large eddy simulation and experimental study on vortex characteristics of water jet in submerged condition[J]. Journal of China University of Petroleum (Edition of Natural Science),2015,39(3):98−104.

  • 期刊类型引用(12)

    1. 武强,朱慧聪,胡辰睿,魏新疆,侯柱平,肖璇,刘学,李俊杰,赵佳,程一帆,杨亮,邢一迪,曾一凡. 我国煤层水害基本架构及发展情势. 煤炭工程. 2024(10): 12-21 . 百度学术
    2. 杨忠,李晓龙. 带压开采煤层底板破坏深度研究. 能源与环保. 2022(05): 306-310 . 百度学术
    3. 王兴明,刘英锋,南生辉,郭康,尚荣. 奥灰承压水上采场底板沿工作面倾向破坏特征分析. 煤炭科学技术. 2022(12): 206-214 . 百度学术
    4. 姬东,汪万里,崔风,白振华. 综采放顶煤工作面常见问题及处理方法. 陕西煤炭. 2021(02): 103-106+130 . 百度学术
    5. 任辰锋. 构建煤矿水害“十位一体”防治技术体系理论与实践. 能源科技. 2021(02): 22-25 . 百度学术
    6. 李晓龙. 煤矿井下水砂突涌钻孔封孔技术研发与应用. 煤田地质与勘探. 2021(04): 192-197 . 本站查看
    7. 赵双全. 层次分析法在工作面底板突水影响因素分析的应用. 现代矿业. 2020(04): 200-203 . 百度学术
    8. 赵利军,曹恒,朱马别克·达吾力. 复合隔水条件下煤层群涌水控制因素及对瓦斯赋存的影响. 中国安全生产科学技术. 2020(07): 55-60 . 百度学术
    9. 曹思文,张民,张振国,朱术云. 下组煤某工作面带压开采奥灰突水危险性探究. 采矿技术. 2020(05): 98-102 . 百度学术
    10. 王高峰. 厚煤层综放开采底板水害探查技术. 自动化应用. 2020(09): 136-137 . 百度学术
    11. 侯俊华,孟凡贞,冯鲁顺. 东滩煤矿采区构造复杂程度及突水危险性分区对比探究. 现代矿业. 2020(09): 191-194+211 . 百度学术
    12. 王志荣,宋沛,温震洋,陈玲霞. 裂隙性储层水平井起裂行为的控制. 工程科学学报. 2020(11): 1449-1456 . 百度学术

    其他类型引用(5)

图(15)  /  表(4)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  18
  • PDF下载量:  33
  • 被引次数: 17
出版历程
  • 收稿日期:  2022-09-12
  • 修回日期:  2022-12-15
  • 网络出版日期:  2023-05-08
  • 刊出日期:  2023-05-24

目录

    /

    返回文章
    返回