Wear law and design of assembling diamond bit based on finite element analysis
-
摘要:
在能源勘探与开发过程中,除了取心钻进方式之外,全面(不取心)钻进也占有较大比例。不取心钻进可以减少提钻取心所消耗的大量提下钻时间,进而增加纯钻时间、提高钻进效率和降低钻进成本。传统不取心钻头在钻探过程中容易出现钻头唇面不均衡磨损的现象,为查明和改善这种不均衡磨损规律,提出采用组合式不取心钻头改善钻头偏磨现象。首先采用数值模拟方法对一二级组合不取心孕镶金刚石钻头进行了钻进花岗岩的数值模拟分析,模拟结果显示,由钻头外缘到中心,应力值由大逐渐变小,磨损量与之相对应。在靠近水口处的钻头外缘,胎体应力值和磨损量最大,最大应力为282.14 MPa,最大磨损深度为1.1×10−5 mm。而在靠近钻头中心处,钻头胎体应力和磨损量值最小,分别为0.002 MPa和1.3×10−6 mm。在钻头唇面半径为55 mm处,钻头磨损速度出现拐点。根据数值模拟结果,设计了二级组合式不取心钻头,由外环钻头、中心钻头和相应的水路系统组成,其中外环钻头规格为ø95/48 mm,中心钻头规格为ø46/16 mm,水路系统由中心孔、4条主水路、4条副水路和环状间隙水路组成。以常钻遇的可钻性为7~8级岩石为基础,对钻头胎体配方、金刚石参数和烧结工艺进行了设计,提高外环钻头胎体耐磨性、金刚石浓度、小粒径金刚石比例,同时增大烧结温度和提高烧结压力,以降低外钻头磨损量,保证钻头内外磨损一致。采用所设计的二级组合式不取心钻头结构,试制了ø75/16 mm不取心钻头,并在可钻等级为8级的花岗岩上进行了室内钻进试验,试验结果表明,钻头磨损均匀,钻进时效约1.84 m/h,胎体消耗高度约1 mm,能满足硬岩全面钻进的需要。本研究为不取心孕镶金刚石钻头设计、研制和施工提供了借鉴。
Abstract:In addition to coring drilling, full (non-coring) drilling also occupies a large proportion in the energy exploration and development. Non-coring drilling can reduce the high time cost of lifting and lowering work required for coring, thereby increasing the net drilling time, improving the drilling efficiency and reducing the drilling costs. The traditional non-coring drill bits are prone to uneven wear on the bit surface during the drilling process. To identify and improve this law of uneven wear, it was herein proposed to use the assembling non-coring bit to improve the eccentric wear of bit. For this reason, numerical simulation analysis was conducted on the drilling of granite with a combination of stage-1 and stage-2 non-coring impregnated diamond bits at first. The simulation results show that the stress and wear on the bit are decreased gradually from the outer edge to the center. Definitely, the stress and wear of bit matrix have the maximal value on the outer edge of the bit close to the water outlet, which are 282.14 MPa and 1.1×10−5 mm respectively, while the minimum value near the center of the drill bit, which are 0.002 MPa and 1.3×10−6 mm, respectively. When the radius of the bit lip is 55 mm, the bit wear speed changes. Then, a two-stage assembling non-coring drill bit was designed based on the numerical simulation results, consisting of an outer ring drill bit, a center drill bit, and a waterway system. The outer ring drill bit is in the size of ø95/48 mm, the center drill bit is sized ø46/16 mm, and the waterway system consists of a center hole, 4 main waterways, 4 auxiliary waterways and an annular gap waterway. Meanwhile, the bit matrix formula, diamond parameters and sintering process were designed based on the common drillability of 7‒8 grade rocks. To improve the wear resistance of the outer ring bit matrix, the diamond concentration, the proportion of small diamond particles, the sintering temperature and the sintering pressure were increased to a certain degree, thereby reducing the wear of the outer bit and ensuring the wearing consistency between the outer and inner bits. Besides, laboratory drilling test was carried out on the granite of grade-8 drillability with the designed ø75/16 mm two-stage assembling non-coring bit. The experiment results indicate that the bit is worn evenly, the rate of penetration is about 1.84 m/h, and the matrix consumption height is about 1 mm, which can meet the needs of full drilling in hard rocks. Generally, this research provides reference for the design, development and construction of non-coring impregnated diamond bit.
-
-
-
[1] 王达,李艺,周红军,等. 我国地质钻探现状和发展前景分析[J]. 探矿工程 (岩土钻掘工程),2016,43(4):1−9. WANG Da,LI Yi,ZHOU Hongjun,et al. Analysis on present situation of geological drilling in China and the development prospects[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2016,43(4):1−9.
[2] 王达, 何远信. 地质钻探手册[M]. 长沙: 中南大学出版社, 2014. [3] 刘海龙,沈立娜,刘协鲁,等. NR826M孕镶全面金刚石钻头在元坝气田的应用[J]. 地质装备,2018,19(1):42−44. DOI: 10.3969/j.issn.1009-282X.2018.01.013 LIU Hailong,SHEN Lina,LIU Xielu,et al. Application of NR826M impregnated full diamond drill bit in Yuanba Gas Field[J]. Equipment for Geotechnical Engineering,2018,19(1):42−44. DOI: 10.3969/j.issn.1009-282X.2018.01.013
[4] YANG Yingxin,SONG Dongdong,REN Haitao,et al. Study of a new impregnated diamond bit for drilling in complex,highly abrasive formation[J]. Journal of Petroleum Science and Engineering,2020,187:106831. DOI: 10.1016/j.petrol.2019.106831
[5] 吴海霞,沈立娜,李春,等. 博孜区块新型表孕镶金刚石全面钻头的研究与应用[J]. 钻探工程,2021,48(3):101−105. WU Haixia,SHEN Lina,LI Chun,et al. Research and application of the new surface impregnated diamond bit in the Bozi Block[J]. Drilling Engineering,2021,48(3):101−105.
[6] 程敏,庞丰,孙荣,等. 高转速/低钻压/大泵量的全面钻进孕镶金刚石钻头[J]. 金刚石与磨料磨具工程,2015,35(1):61−67. CHENG Min,PANG Feng,SUN Rong,et al. Comprehensive drilling impregnated diamond bit under high rotate speed/low wob/large pump output[J]. Diamond & Abrasives Engineering,2015,35(1):61−67.
[7] JIA Meiling,CAI Jiapin,OUYANG Zhiyong,et al. Design & application of diamond bit to drilling hard rock in deep borehole[J]. Procedia Engineering,2014,73:134−142. DOI: 10.1016/j.proeng.2014.06.181
[8] ZHANG Deng,YANG Yingxin,REN Haitao,et al. Failure resistance research of the dual–stage hybrid bit[J]. Engineering Failure Analysis,2023,145:107009. DOI: 10.1016/j.engfailanal.2022.107009
[9] HUANG Jian,ZENG Bo,HE Yuhang,et al. Numerical study of rock–breaking mechanism in hard rock with full PDC bit model in compound impact drilling[J]. Energy Reports,2023,9:3896−3909. DOI: 10.1016/j.egyr.2023.02.084
[10] CAI Mingjie,TAN Leichuan,TAN Bin,et al. Experimental and numerical study on the dynamic characteristics of full–size PDC bit[J]. Mechanical Systems and Signal Processing,2023,200:110560. DOI: 10.1016/j.ymssp.2023.110560
[11] 刘勇,代硕,魏建平,等. 水射流自驱钻头自进能力影响因素研究[J]. 煤田地质与勘探,2023,51(5):198−206. LIU Yong,DAI Shuo,WEI Jianping,et al. Study on factors influencing the self–propelling capacity of self–propelled water jet drill bits[J]. Coal Geology & Exploration,2023,51(5):198−206.
[12] 蔡灿,谭政博,玄令超,等. 分离式冲击–刮切复合钻头破岩机理及钻进破岩研究[J]. 振动与冲击,2022,41(16):232−241. CAI Can,TAN Zhengbo,XUAN Lingchao,et al. A study on drilling breakage and rock breaking mechanism by using separated impact–scraping and cutting compound bit[J]. Journal of Vibration and Shock,2022,41(16):232−241.
[13] 骆中山,曹函,孙平贺,等. 基于数值计算的硬质合金切削齿与典型岩石力学耦合研究[J]. 探矿工程 (岩土钻掘工程),2017,44(增刊1):346−351. LUO Zhongshan,CAO Han,SUN Pinghe,et al. Research on mechanical coupling of cemented carbide cutting teeth and typical rock based on numerical calculation[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2017,44(Sup.1):346−351.
[14] 杨展,谭松成,方小红,等. 提高烧结压力对孕镶金刚石钻头性能的影响研究[J]. 煤田地质与勘探,2023,51(6):194−199. YANG Zhan,TAN Songcheng,FANG Xiaohong,et al. Effects of increasing sintering pressure on the performance of impregnated diamond bit[J]. Coal Geology & Exploration,2023,51(6):194−199.
[15] 孙吉伟,沈立娜,杨甘生,等. 孕镶金刚石钻头的局部体积破碎研究[J]. 煤田地质与勘探,2019,47(5):232−238. SUN Jiwei,SHEN Lina,YANG Gansheng,et al. Study on local volume breakage of diamond–impregnated bit[J]. Coal Geology & Exploration,2019,47(5):232−238.
[16] ZHAO Xiaojun,LI Jingyi,DUAN Longchen,et al. Effect of Fe–based pre–alloyed powder on the microstructure and holding strength of impregnated diamond bit matrix[J]. International Journal of Refractory Metals and Hard Materials,2019,79:115−122. DOI: 10.1016/j.ijrmhm.2018.11.015
[17] HU Huanxiao,CHEN Wei,DENG Chao,et al. Effect of matrix composition on the performance of Fe–based diamond bits for reinforced concrete structure drilling[J]. International Journal of Refractory Metals and Hard Materials,2021,95:105419. DOI: 10.1016/j.ijrmhm.2020.105419
[18] SHI Hengchao,DUAN Longchen,TAN Songcheng,et al. Influence of pre–alloying on Fe–Cu based metal matrix composite[J]. Journal of Alloys and Compounds,2021,868:159134. DOI: 10.1016/j.jallcom.2021.159134
-
期刊类型引用(9)
1. 吴见,张松航,贾腾飞,晁巍巍,彭文春,李世龙. 深部煤层钻孔保压取心流程分析及含气量测定方法. 石油实验地质. 2025(01): 163-172 . 百度学术
2. 闫霞,徐凤银,熊先钺,王峰,李春虎,张纪远,徐博瑞,成前辉,胡雄,朱学光,梁为,袁朴,冯延青,魏振吉. 深部煤层气勘探开发关键实验技术及发展方向. 煤田地质与勘探. 2025(01): 128-141 . 本站查看
3. 刘伟,韩冬阳,徐浩,周禹军,李天男. 煤层双重孔隙瓦斯输运机理及模型评估. 煤炭科学技术. 2025(02): 151-162 . 百度学术
4. 高明忠,宋杰,崔鹏飞,李永程,李聪,李佳南,刘贵康,游镇西,史晓军. 深部煤层原位保压保瓦斯取心技术装备及初步应用. 煤炭科学技术. 2024(04): 143-154 . 百度学术
5. 陈绍杰,周婷,黄跃辉,徐阿猛,王智正. “封-开-封”型密封取样装置及试验. 华北科技学院学报. 2024(03): 1-5 . 百度学术
6. Peng-Fei Cui,De-Lei Shang,Peng Chu,Ju Li,Da-Li Sun,Tian-Yu Wang,Ming-Zhong Gao,He-Ping Xie. Optimal depth of in-situ pressure-preserved coring in coal seams considering roadway excavation and drilling disturbance. Petroleum Science. 2024(05): 3517-3534 . 必应学术
7. 关建闯,安丰华,花春蕾. 复杂地层条件下煤层瓦斯压力免封孔测试方法应用研究. 能源与环保. 2024(12): 104-106+112 . 百度学术
8. 翟成,丛钰洲,陈爱坤,丁熊,李宇杰,朱薪宇,徐鹤翔. 中国煤矿瓦斯突出灾害治理的若干思考及展望. 中国矿业大学学报. 2023(06): 1146-1161 . 百度学术
9. 陈学习. 井下煤层瓦斯压力与含量直接测定技术研究进展. 华北科技学院学报. 2023(05): 1-14 . 百度学术
其他类型引用(2)