钻孔救援连续缆管储放设备研制

高科, 牛鑫, 赵研, 秦小琳, 吕晓姝, 谢晓波

高科,牛鑫,赵研,等. 钻孔救援连续缆管储放设备研制[J]. 煤田地质与勘探,2023,51(3):168−176. DOI: 10.12363/issn.1001-1986.22.06.0443
引用本文: 高科,牛鑫,赵研,等. 钻孔救援连续缆管储放设备研制[J]. 煤田地质与勘探,2023,51(3):168−176. DOI: 10.12363/issn.1001-1986.22.06.0443
GAO Ke,NIU Xin,ZHAO Yan,et al. Development of storage equipment of continuous cable pipe for borehole rescue[J]. Coal Geology & Exploration,2023,51(3):168−176. DOI: 10.12363/issn.1001-1986.22.06.0443
Citation: GAO Ke,NIU Xin,ZHAO Yan,et al. Development of storage equipment of continuous cable pipe for borehole rescue[J]. Coal Geology & Exploration,2023,51(3):168−176. DOI: 10.12363/issn.1001-1986.22.06.0443

 

钻孔救援连续缆管储放设备研制

基金项目: 国家重点研发计划课题(2018YFC0808201);国家自然科学基金项目(42172345,41972324);吉林省教育厅科学研究项目(JJKH20221016KJ, JJKH20221014KJ)
详细信息
    作者简介:

    高科,1977年生,男,内蒙古乌兰察布人,博士,教授,博士生导师,从事仿生钻探机具、科学钻探装备和地热钻探等方面的研究工作. E-mail:gaokenm@jlu.edu.cn

    通讯作者:

    赵研,1983年生,男,吉林松原人,博士,副教授,博士生导师,从事仿生自平衡钻探技术和多相介质耦合传热等方面的研究工作. E-mail: zhaoyan1983@jlu.edu.cn

  • 中图分类号: TD41

Development of storage equipment of continuous cable pipe for borehole rescue

  • 摘要:

    双钻头仿生自平衡连续钻进技术具有无需钻机、钻进速度快和对井壁扰动小等优点,是构建矿山灾害保障救援通道的潜在关键技术之一。该技术中的连续缆管由于内置有电源、信号和排屑等通道,要求在储放过程中不能出现像现有滚筒式绞车储存连续管时存在的互咬、挤压和设置动静导电滑环等情况,故需研制与之匹配的专用连续缆管地面储放设备。依据双钻头自平衡钻进技术的需求和连续管滚筒式绞车储存技术存在的不足,提出了连续缆管套筒式储存和夹持式输送原理,构建了连续缆管套筒式储存和输送模型,并应用有限元分析软件对连续缆管的夹持输送过程进行模拟分析。依据双钻头仿生自平衡钻进系统对连续缆管的性能要求,确定了整机尺寸参数,并对整机的运行参数进行了计算,建立了适用于连续缆管外径为50.8 mm、井眼深度小于1 016.8 m、场地面积小于50 m2钻井工况的钻孔救援连续缆管储放设备三维模型。最后,研发了与本设备匹配的电控系统,并对加工组装好的整机进行了连续缆管夹持输送、储放设备运行、连续缆管储放等机电一体化联调与试验。结果表明:连续缆管储放设备运行平稳,在连续缆管存储和输送过程中,无互咬和锁死现象,没有动静导电滑环,能够满足双钻头仿生自平衡钻进系统的技术需求,为钻孔救援双钻头自平衡连续钻进提供了必要的装备支撑。

    Abstract:

    The double-bit bionic self-balancing continuous drilling technology has the advantages including requiring no drilling rig, high drilling speed and slight disturbance to the borehole wall. It is one of the key potential technologies for constructing the security and rescue passages against mine disasters. In this technology, as there are passages for power supply, signal, chip removal and other aspects that are built in the continuous cable pipe, it is required that there shall be no such interference, extrusion or arrangement of dynamic/static conductive electric conduction link as in using the existing drum hoist to store continuous pipes during storage. Therefore, the special ground storage equipment for continuous cable pipes that fits with the technology shall be developed. Firstly based on the demand of the double-bit self-balanced drilling technology and the deficiency in the drum hoist storage technology for continuous pipes. We proposed the sleeve storage and hold-down conveying principle for continuous cable pipes, constructed models, and applied the software of finite element analysis to conduct simulation analysis for the hold-down conveying process of the continuous cable pipes. Secondly according to the double-bit bionic self-balancing drilling system's requirements about the continuous cable pipe performance, the 3D model of the storage equipment of continuous cable pipe for borehole rescue that was applicable to the drilling conditions with the outer diameter of the continuous cable pipe of 50.8 mm, the borehole depth smaller than 1 016.8 m and the site area smaller than 50 m2 was constructed. Finally, the electronic control system fitting with this equipment was developed, and the mechatronics combined adjusting and test, including the continuous cable pipe's hold-down conveying, operation of storage equipment and storage of continuous cable pipes, were conducted for the machined, assembled equipment. As indicated by the results, during the storage and conveying of the continuous cable pipes, there was no interference, locking or dynamic and static electric conduction link, which can meet the technical demand of the double-bit bionic self-balancing drilling system and provide necessary equipment support for the double-bit self-balancing continuous drilling for borehole rescue.

  • 图  1   连续缆管储入滚筒时受力

    Fig.  1   Stress principle of continuous cable pipe when stored in drum

    图  2   连续缆管储入套筒式存储筒受力原理

    Fig.  2   Stress principle of continuous cable pipe storage sleeve storage cartridge

    图  3   连续缆管存储原理

    Fig.  3   Storage principle of continuous cable pipe

    图  4   多套筒储管机构

    Fig.  4   Multi sleeve pipe storage mechanism

    图  5   5层连续管存储筒截面

    Fig.  5   5-layer coiled tube storage cylinder

    图  6   储放注入机构夹持连续缆管工作原理

    Fig.  6   Working principle diagram of storage and injection mechanism clamping continuous cable pipe

    图  7   夹持块夹持输送连续缆管的理论模型

    Fig.  7   theoretical model of clamping block clamping and conveying continuous cable pipe

    图  8   夹持连续缆管加载

    Fig.  8   Clamping a continuous cable pipe loading diagram

    图  9   连续缆管应力云图

    Fig.  9   Stress nephogram of clamping block

    图  10   钻孔救援连续缆管储放设备整体结构

    Fig.  10   Overall structure of drilling rescue continuous cable pipe storage equipment

    图  11   储放注入机构

    1—夹持电机;2—输送电机;3—输送电机压力传感器;4—夹持电机压力传感器;5—储放注入架体;6—夹持输送链条;7—承压弹簧

    Fig.  11   Storage and injection mechanism

    图  12   连续缆管储放设备运行俯视图

    Fig.  12   Operation top view of continuous cable pipe storage equipment

    图  13   钻孔救援连续缆管储放系统控制逻辑

    Fig.  13   Control logic diagram of drilling rescue continuous cable pipe storage and release system

    图  14   连续缆管储放系统可视化操作界面

    Fig.  14   Visual operation interface of continuous cable pipe storage and release system

    图  15   连续缆管储放设备运行实验

    Fig.  15   Operation experiment of continuous cable pipe storage and release equipment

    图  16   连续缆管夹持输送实验

    Fig.  16   Continuous cable pipe clamping and transportation experiment

    表  1   多套筒储管机构参数

    Table  1   Parameters of multi sleeve storage mechanism

    参数 数值
    连续缆管直径d/mm 50.8
    单筒高度h/mm 1 100
    初始存储筒直径D1/mm 2 190
    存储过渡间隔s/mm 150
    存储筒数/个 3
    过渡筒数/个 2
    下载: 导出CSV

    表  2   储放注入机构相关参数

    Table  2   Relevant parameters of storage and injection mechanism

    参数 数值
    夹持电机额定推力/kN 62.4
    摩擦因数μ 0.4
    输送电机转速n/(r·min−1) 2 000
    输送电机减速机减速比a 120
    输送电机效率η 0.9
    输送电机链轮半径/m 0.09
    下载: 导出CSV

    表  3   Q235钢材相关参数

    Table  3   Relevant parameters of Q235 steel

    质量密度/(g·cm−3) 泊松比 弹性模量E/MPa 屈服应力 $ \sigma $/MPa
    7.85 0.3 210 000 235
    下载: 导出CSV

    表  4   钻孔救援连续缆管储放设备参数

    Table  4   Parameters of drilling rescue continuous cable pipe storage equipment

    参数 数值
    鹅颈导向器半径/mm 1 010
    存储筒间隔/mm 150
    存储筒厚度/mm 10
    设备高度/m 8.6
    连续缆管存储量/m 1 016.8
    最小存储筒半径/mm 2 190
    牵引车运行半径/mm 3 141
    下载: 导出CSV

    表  5   连续缆管储放设备各机构参数

    Table  5   Parameters of Various Mechanisms of Continuous Cable Pipe Storage Equipment

    储放设备单元 链轮半径/mm 转速比 额定转速/(r·min−1)
    牵引车电机 80 45 1 300
    储放注入机构输送电机 90 120 2 000
    储放导正机构电机 90 120 2 000
    下载: 导出CSV

    表  6   钻孔救援连续缆管储放设备运行参数

    Table  6   Operation parameters of drilling rescue continuous cable pipe storage equipment

    序号 牵引车速度/(r·min−1) 储放注入机构转速/(r·min−1) 储放导正机构速度/(r·min−1) 计算注入速度/(m·min−1) 实测注入速度/(m·min−1)
    1 61 102 102 0.432 0.424
    2 90 150 150 0.636 0.638
    3 121 200 200 0.848 0.858
    4 182 300 300 1.272 1.279
    5 212 350 350 1.484 1.488
    下载: 导出CSV

    表  7   连续缆管夹持输送实验数据

    Table  7   Experimental data of continuous cable pipe clamping and transportation

    序号 夹持力/N 注入力/N 静摩擦因数μ
    1 7 815 4 800 0.61
    2 13 865 11 720 0.84
    3 19 165 17 473 0.91
    4 23 355 21 026 0.90
    5 31 282 28 261 0.90
    下载: 导出CSV
  • [1] 田宏亮,邹祖杰,郝世俊,等. 矿山灾害生命保障救援通道快速安全构建关键技术与装备[J]. 煤田地质与勘探,2022,50(11):1−13. DOI: 10.12363/issn.1001-1986.22.05.0415

    TIAN Hongliang,ZOU Zujie,HAO Shijun,et al. Key technologies and equipment of quickly and safely building life support and rescue channel in mine disaster[J]. Coal Geology & Exploration,2022,50(11):1−13. DOI: 10.12363/issn.1001-1986.22.05.0415

    [2] 郝世俊,莫海涛. 地面大直径应急救援钻孔成孔工艺设计与分析[J]. 煤田地质与勘探,2021,49(1):277−284. DOI: 10.3969/j.issn.1001-1986.2021.01.031

    HAO Shijun,MO Haitao. Design and analysis of hole–forming technology for surface large diameter emergency rescue borehole[J]. Coal Geology & Exploration,2021,49(1):277−284. DOI: 10.3969/j.issn.1001-1986.2021.01.031

    [3] 高科,陈杭凯,许晓慧,等. 双孕镶金刚石钻头的自平衡逆向回转破岩性能[J]. 吉林大学学报(工学版),2021,51(3):866−874. DOI: 10.13229/j.cnki.jdxbgxb20200542

    GAO Ke,CHEN Hangkai,XU Xiaohui,et al. Rock fragmentation characteristics of double impregnated diamond bits with self–balancing reverse rotation[J]. Journal of Jilin University(Engineering and Technology Edition),2021,51(3):866−874. DOI: 10.13229/j.cnki.jdxbgxb20200542

    [4] 邓禹,夏辉,高建东,等. 脐带缆轻量化设计及其力学性能[J]. 船舶工程,2022,44(3):150−157. DOI: 10.13788/j.cnki.cbgc.2022.03.24

    DENG Yu,XIA Hui,GAO Jiandong,et al. Lightweight and mechanical properties of umbilical cable[J]. Ship Engineering,2022,44(3):150−157. DOI: 10.13788/j.cnki.cbgc.2022.03.24

    [5] 高科,张聪,赵研,等. 救援钻孔用双钻头扭矩自平衡钻进系统理论与实验[J]. 煤田地质与勘探,2022,50(11):85−93.

    GAO Ke,ZHANG Cong,ZHAO Yan,et al. Theory and experiment of the dual-bit torque self-balancing drilling system for rescue drilling[J]. Coal Geology & Exploration,2022,50(11):85−93.

    [6] 李银银,周志宏,臧传贞,等. 连续管卷绕破坏分析[J]. 石油机械,2015,43(10):81−85. DOI: 10.16082/j.cnki.issn.1001-4578.2015.10.019

    LI Yinyin,ZHOU Zhihong,ZANG Chuanzhen,et al. Analysis of coiled tubing failure caused by winding[J]. China Petroleum Machinery,2015,43(10):81−85. DOI: 10.16082/j.cnki.issn.1001-4578.2015.10.019

    [7]

    LIU Shaohu,ZHOU Hao,XIAO Hui,et al. A new theoretical model of low cycle fatigue life for coiled tubing under coupling load[J]. Engineering Failure Analysis,2021,124:105365. DOI: 10.1016/j.engfailanal.2021.105365

    [8]

    YUE Qianbei,SUN Guohao,WANG Gang,et al. Experimental study on the influence of bending and straightening cycles for non–destructive and destructive coiled tubing[J]. Engineering Failure Analysis,2021,123:105218. DOI: 10.1016/j.engfailanal.2021.105218

    [9] 宋生印,王英杰,林元华,等. 连续管疲劳寿命预测[J]. 煤田地质与勘探,2006,34(6):73−76. DOI: 10.3969/j.issn.1001-1986.2006.06.022

    SONG Shengyin,WANG Yingjie,LIN Yuanhua,et al. Fatigue life estimate for coiled tubing[J]. Coal Geology & Exploration,2006,34(6):73−76. DOI: 10.3969/j.issn.1001-1986.2006.06.022

    [10] 李现东,文涛. 连续管注入头夹持块结构优化研究[J]. 石油机械,2012,40(11):48−52. DOI: 10.16082/j.cnki.issn.1001-4578.2012.11.014

    LI Xiandong,WEN Tao. Structural optimization of CT clamping block on injection head[J]. China Petroleum Machinery,2012,40(11):48−52. DOI: 10.16082/j.cnki.issn.1001-4578.2012.11.014

    [11] 胡志强,刘寿军,袁文才,等. 注入头夹持块夹持性能研究及结构优化[J]. 石油机械,2019,47(12):69−74. DOI: 10.16082/j.cnki.issn.1001-4578.2019.12.011

    HU Zhiqiang,LIU Shoujun,YUAN Wencai,et al. Research on gripping performance of CT injector head gripper block and structure optimization[J]. China Petroleum Machinery,2019,47(12):69−74. DOI: 10.16082/j.cnki.issn.1001-4578.2019.12.011

    [12] 杨高,刘菲,唐纯静,等. 连续管注入头夹持块的夹持性能研究[J]. 石油机械,2012,40(11):10−14.

    YANG Gao,LIU Fei,TANG Chunjing,et al. Research on the gripping performance of CT clamping block on injector head[J]. China Petroleum Machinery,2012,40(11):10−14.

    [13] 杨高,罗刚. 连续管缠绕力学研究[J]. 石油矿场机械,2010,39(5):10−13. DOI: 10.3969/j.issn.1001-3482.2010.05.003

    YANG Gao,LUO Gang. Mechanics research on bending coiled tubing[J]. Oil Field Equipment,2010,39(5):10−13. DOI: 10.3969/j.issn.1001-3482.2010.05.003

    [14] 肖建秋,张燕萍,马青芳,等. 连续管测井机滚筒总成结构设计[J]. 石油矿场机械,2009,38(9):55−58.

    XIAO Jianqiu,ZHANG Yanping,MA Qingfang,et al. Structural design of reel used in coiled tubing logging unit[J]. Oil Field Equipment,2009,38(9):55−58.

    [15] 吴大飞,张三坡,马曾林,等. 连续管滚筒排管液压离合器的研制与应用[J]. 石油机械,2012,40(11):27−30. DOI: 10.16082/j.cnki.issn.1001-4578.2012.11.009

    WU Dafei,ZHANG Sanpo,MA Zenglin,et al. Development and application of hydraulic clutch for CT level wing[J]. China Petroleum Machinery,2012,40(11):27−30. DOI: 10.16082/j.cnki.issn.1001-4578.2012.11.009

    [16] 殷卓成. 连续管速度管柱滚筒控制系统研究[J]. 科学技术创新,2018(34):62−63. DOI: 10.3969/j.issn.1673-1328.2018.34.034

    YIN Zhuocheng. Research on the control system of continuous pipe velocity string drum[J]. Scientific and Technological Innovation,2018(34):62−63. DOI: 10.3969/j.issn.1673-1328.2018.34.034

图(16)  /  表(7)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  14
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 修回日期:  2022-10-30
  • 网络出版日期:  2023-02-21
  • 刊出日期:  2023-03-14

目录

    /

    返回文章
    返回