Experimental study on high-pressure hydraulic percussive rotary drilling based on single-tooth rock-breaking process
-
摘要:
针对煤矿井下穿层钻孔硬岩钻进效率低的难题,基于冲击回转钻进机理和Wassara高压液动冲击器主要特点,分析柱齿在冲击荷载下形成的破碎坑形态,并将其划分为崩解区、密实区、开裂区和弹性区。在此基础之上,对柱齿连续破岩的大间隔冲击和小间隔冲击2种情况进行过程分析,结合淮南潘三矿现场试验条件讨论高压液动冲击回转钻进工艺参数,优选高压液动冲击回转钻进配套钻机、冲击器、钻杆、钻头和清水泵,及主要技术参数。试验结果表明:当清水压力在15 MPa以上时,高压液动冲击回转钻进的平均机械钻速为24.67 m/h,与采用该技术之前的8.48 m/h机械钻速相比提高了约1.9倍;并采用回归分析拟合得到机械钻速与水压之间的线性关系,经过数理统计的F检验,F=8.82大于F0.05(1,7),验证了回归结果是显著的,机械钻速随水压的增大而线性增大。高压液动冲击回转钻进技术可有效提高煤矿井下硬岩层钻进效率,保障煤矿安全高效生产。
Abstract:Aiming at the problem of low efficiency of hard rock drilling in crossing borehole in underground coal mine, the morphology of crushing pit formed by column tooth under the percussive load was analyzed based on the percussive rotary drilling mechanism and the main characteristics of Wassara high-pressure hydraulic impactor, and the crushing pit was divided into the four areas of disintegration area, compact area, crack area and elastic area. On this basis, process analysis was performed on the continuous tooth rock-breaking with large and small interval impact. Meanwhile, the technical parameters of high-pressure hydraulic percussive rotary drilling were discussed with reference to the field test conditions of Huainan Pansan Mine. The drilling rig, impactor, drill pipe, drill bit and clean water pump for high-pressure hydraulic percussive rotary drilling were selected preferably, for which the main technical parameters were given. The test results show that the average rate of penetration of high-pressure hydraulic percussive rotary drilling is 24.67 m/h at the clean water pressure above 15 MPa, which is about 1.9 times higher than that of 8.48 m/h without adopting this technology. Besides, the linear relationship between the rate of penetration and water pressure is obtained by regression analysis fitting. According to the F-test of mathematical statistics, the regression results are verified to be significant with F=8.82>F0.05(1,7) and the correlation coefficient, and the rate of penetration increases linearly with the increase of water pressure. Generally, the high-pressure hydraulic percussive rotary drilling technology could effectively improve the drilling efficiency of hard rock borehole in underground coal mine and ensure the safe and efficient production of coal mine.
-
-
表 1 不同柱齿中心距所需钻机最优转速
Table 1 Optimal speed of the column tooth at different radius positions
序号 柱齿中心距/mm 最优转速/(r·min−1) 1 50 57 2 40 72 3 30 96 4 20 143 表 2 钻机主要技术参数
Table 2 Main technical parameters of the drilling rig
参数 数值 参数 数值 额定转矩/(N·m) 4000 主轴通孔直径/mm 75 低转速档/(r·min−1) 20~60 主轴倾角/(°) ±90 高转速档/(r·min−1) 60~120 主轴方位角/(°) ±90 最大给进力/kN 123 最大起拔力/kN 155 行程/mm 600 最低开孔高度/mm 1250 表 3 W80型高压液动冲击器主要技术参数
Table 3 Main technical parameters of the W80 high-pressure hydraulic impactor
参数 数值 参数 数值 长度/mm 1049 流量/(L·min−1) 70~270 直径/mm 91 冲击频率/Hz 60 质量/kg 32 推进力/kN 7~10 转矩/(N·m) 800~1500 钻杆外径/mm 73 清水压力/MPa 6~18 过滤精度/μm 50 配套钻头直径/mm 95/102 转速/(r·min−1) 60~100 表 4 试验钻孔机械钻速
Table 4 Rate of penetration of the test drilling boreholes
序号 孔号 水压
/MPa进尺
/m机械钻速
/(m·h−1)备注 1 9-9 10 67 17.71 2 9-6 10 52 15.06 3 9-3 12 40 18.46 4 9-2 12 40 12.00 泵压不稳 5 5-9 15 63 27.94 6 5-6 15 43 19.11 孔内破碎 7 5-8 15 33 32.17 未穿过硬岩 8 8-5 15 47 26.83 9 补5-8 15 59 20.20 10 5-7 18 47 26.32 11 5-3 15 41 20.14 表 5 回归结果
Table 5 Regression results
来源 自由度 平方和 均方 F值 回归 1 93.18 93.18 8.82 剩余 7 73.93 10.56 总计 8 167.11 -
[1] 周红星,程远平,刘洪永,等. 突出煤层穿层钻孔孔群增透技术及应用[J]. 煤炭学报,2011,36(9):1515−1518. ZHOU Hongxing,CHENG Yuanping,LIU Hongyong,et al. Permeability improvement technology of array crossing boreholes and its application in outburst coal seam[J]. Journal of China Coal Society,2011,36(9):1515−1518.
[2] 郭军杰,程晓阳,刘益文. 极薄煤层群顶板穿层钻孔瓦斯抽采技术研究[J]. 煤炭工程,2017,49(2):72−74. GUO Junjie,CHENG Xiaoyang,LIU Yiwen. Research on roof–cross borehole gas drainage method in ultra thin coal seam group[J]. Coal Engineering,2017,49(2):72−74.
[3] 王兆丰,席杰,陈金生,等. 底板岩巷穿层钻孔一孔多用瓦斯抽采时效性研究[J]. 煤炭科学技术,2021,49(1):248−256. WANG Zhaofeng,XI Jie,CHEN Jinsheng,et al. Study on time effectiveness of gas drainage by crossing layer drilling in floor rock roadway with one hole and multi–purpose[J]. Coal Science and Technology,2021,49(1):248−256.
[4] 姚宁平,王毅,姚亚峰,等. 我国煤矿井下复杂地质条件下钻探技术与装备进展[J]. 煤田地质与勘探,2020,48(2):1−7. DOI: 10.3969/j.issn.1001-1986.2020.02.001 YAO Ningping,WANG Yi,YAO Yafeng,et al. Progress of drilling technologies and equipments for complicated geological conditions in underground coal mines in China[J]. Coal Geology & Exploration,2020,48(2):1−7. DOI: 10.3969/j.issn.1001-1986.2020.02.001
[5] 姚宁平,姚亚峰,方鹏,等. 我国煤矿坑道钻探装备技术进展与展望[J]. 钻探工程,2021,48(1):81−87. YAO Ningping,YAO Yafeng,FANG Peng,et al. Advances and outlook of coal mine tunnel drilling equipment and technology[J]. Drilling Engineering,2021,48(1):81−87.
[6] 豆旭谦. 煤矿井下穿层钻孔高效钻进方法[J]. 煤矿安全,2020,51(5):126−129. DOU Xuqian. High efficiency drilling methods for through beds hole in underground coal mine[J]. Safety in Coal Mines,2020,51(5):126−129.
[7] 杨甘生. 冲击回转碎岩机理探讨[J]. 探矿工程 (岩土钻掘工程),2013,40(2):19−21. YANG Gansheng. Discussion on rock broken mechanism of percussive–rotary drilling[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2013,40(2):19−21.
[8] 杨冬冬,赵江鹏,赵建国,等. 煤矿井下硬岩层快速成孔钻进技术与发展趋势[J]. 煤炭科学技术,2019,47(12):136−140. YANG Dongdong,ZHAO Jiangpeng,ZHAO Jianguo,et al. Fast drilling technology and development tendency of hard rock in underground coal mine[J]. Coal Science and Technology,2019,47(12):136−140.
[9] 豆旭谦,金新,童碧,等. 气动潜孔锤在淮南潘三矿上仰穿层孔硬岩钻进中的应用[J]. 煤炭技术,2016,35(1):201−203. DOU Xuqian,JIN Xin,TONG Bi,et al. Application of pneumatic DTH hammer on hard rock drilling of upward layer–through borehole in Huainan Pansan coal mine[J]. Coal Technology,2016,35(1):201−203.
[10] 刘卫亮. 气动冲击旋转钻进在煤矿硬岩钻进中的应用[J]. 煤矿机械,2019,40(2):128−129. LIU Weiliang. Application of pneumatic impact rotary drilling in hard rock drilling of coal mine[J]. Coal Mine Machinery,2019,40(2):128−129.
[11] 杨冬冬,王四一. 多工艺冲击回转钻进技术在硬岩钻进中的应用[J]. 煤矿机械,2018,39(1):112−114. YANG Dongdong,WANG Siyi. Application of multi–technology impact and rotary drilling technology in hard rock drilling[J]. Coal Mine Machinery,2018,39(1):112−114.
[12] 李彦明. 冲击–回转钻进工艺在超硬岩层中的应用[J]. 煤矿机械,2011,32(3):210−212. DOI: 10.3969/j.issn.1003-0794.2011.03.091 LI Yanming. Application of impact–rotary drilling technology in superhard rock[J]. Coal Mine Machinery,2011,32(3):210−212. DOI: 10.3969/j.issn.1003-0794.2011.03.091
[13] 唐大勇. 冲击–回转钻进在复杂岩层中的应用[J]. 煤矿机械,2013,34(6):201−202. TANG Dayong. Application of impact rotation drilling in complicated rock[J]. Coal Mine Machinery,2013,34(6):201−202.
[14] 孙强,杨冬冬,彭枧明,等. 高能射流式液动锤在花岗岩中的钻进研究[J]. 探矿工程 (岩土钻掘工程),2016,43(8):39−43. SUN Qiang,YANG Dongdong,PENG Jianming,et al. Experimental research on high energy liquid–jet hammer in granite drilling[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2016,43(8):39−43.
[15] 张鹏飞,葛东,程靖清,等. 高能射流式液动锤在赵固一矿井下穿层注浆钻孔中的应用[J]. 探矿工程 (岩土钻掘工程),2018,45(5):4−7. ZHANG Pengfei,GE Dong,CHENG Jingqing,et al. Application of high energy liquid–jet hydraulic hammer in layer–crossing grouting drilling Zhaogu mine–1 underground[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2018,45(5):4−7.
[16] 豆旭谦,金新,童碧,等. 淮南矿区硬岩穿层钻孔钻进方法对比试验研究[J]. 煤炭科学技术,2018,46(11):151−156. DOI: 10.13199/j.cnki.cst.2018.11.024 DOU Xuqian,JIN Xin,TONG Bi,et al. Comparative experimental study on drilling methods of hard rock borehole passed through strata in Huainan mining area[J]. Coal Science and Technology,2018,46(11):151−156. DOI: 10.13199/j.cnki.cst.2018.11.024
[17] 张鑫鑫. 高能射流式液动锤理论与实验研究[D]. 长春: 吉林大学, 2017. ZHANG Xinxin. Theoretical and experimental study on fluidic hammer with high impact energy[D]. Changchun: Jilin University, 2017.
[18] 卢春华, 肖冬顺, 曾立新, 等. 工程钻探与取样技术[M]. 武汉: 中国地质大学出版社, 2018. [19] 蔡灿,伍开松,廉栋,等. 单齿冲击作用下破岩机制分析[J]. 岩土力学,2015,36(6):1659−1666. DOI: 10.16285/j.rsm.2015.06.018 CAI Can,WU Kaisong,LIAN Dong,et al. Study of rock–breaking mechanism under single–tooth impact[J]. Rock and Soil Mechanics,2015,36(6):1659−1666. DOI: 10.16285/j.rsm.2015.06.018
[20] 朱海燕,刘清友,邓金根,等. 冲旋钻井条件下的岩石破碎机理[J]. 应用基础与工程科学学报,2012,20(4):622−631. DOI: 10.3969/j.issn.1005-0930.2012.08.008 ZHU Haiyan,LIU Qingyou,DENG Jingen,et al. Rock–breaking mechanism of rotary–percussive drilling[J]. Journal of Basic Science and Engineering,2012,20(4):622−631. DOI: 10.3969/j.issn.1005-0930.2012.08.008
-
期刊类型引用(8)
1. 蓝龙飞. 在冻融条件下某露天矿山边坡变形特征研究. 矿产勘查. 2024(S1): 43-46 . 百度学术
2. 梁博,杨更社,冯伟,潘振兴,孙杰龙,刘慧,陈奇. 冻融诱发平面滑移型岩质边坡失稳模型试验研究. 西安科技大学学报. 2024(06): 1118-1126 . 百度学术
3. 张庆武,阴子晔,刘树弟. 岩土冻结的主要影响因素分析及应对措施. 煤炭与化工. 2023(10): 7-10+18 . 百度学术
4. 王云. 分析高陡岩土边坡绿色生态环境修复技术. 世界有色金属. 2022(09): 211-213 . 百度学术
5. 陈军浩,庄言,陈笔尖,赵振伟,王启云. 滨海软土冻结温度场发展规律. 煤田地质与勘探. 2020(04): 174-182 . 本站查看
6. 谭捍华,李斌,李家欣,袁维,李宗鸿. 冻融循环作用下白云岩边坡的稳定性分析. 科学技术与工程. 2020(33): 13825-13832 . 百度学术
7. 李国锋,李宁,刘乃飞,朱才辉. 多年冻岩土区露天矿边坡局部稳定性探究. 西安理工大学学报. 2019(01): 53-61 . 百度学术
8. 李伟. 分析高陡岩土边坡绿色生态环境修复技术. 居舍. 2018(32): 46 . 百度学术
其他类型引用(9)