Review and prospect of coal mine geological guarantee system in China during 30 years of construction
-
摘要:
地质保障是煤炭安全、高效、绿色开采不可或缺的基础。综述了我国煤矿地质保障系统建设30年来在保障内涵、基础理论研究、技术与装备研发等方面的主要进展。较为系统地分析了煤炭绿色智能开采背景下地质保障系统建设面临的5方面技术难题:地质信息采集与解释的智能化水平不高,静态地质条件探查精度较低、综合研究程度不高、超前预测可靠性亟待提高,动态地质信息实时在线监测方法单一、致灾响应评价技术标准缺项,地质信息管理与多源异构信息融合的技术水平不高,三维地质模型精度不能满足智能开采对地质透明化的要求。指出煤矿地质保障系统未来应以精准地质预测为目的,以实现地质透明为目标,以精细地质探测和精准地质表征为突破口,重点在以下方向攻关:(1) 以建立具有矿井地质特色的全空间地球物理场多参量响应模板为目标,不断加强矿井物探的应用基础研究。(2) 低空无人机与智能机器人在地质探测和监测数据采集中的先导性示范研究。(3) 加强矿井地质体赋存与分布规律和采动覆岩变形规律研究,探索精准辨识“地质异常”的方法,研究基于矿井地质与工程特色的智能开采地质条件定量描述和分区综合预测评价的理论与方法。(4) 多源多维异构地质数据体交换格式与建库标准、工作面地质透明程度量化评价方法研究,研发多源异构地质信息融合−共享与三维可视化技术、基于地质大数据的三维地质几何属性一体化集成建模与自动更新技术等。同时,提出分层分类梯级人才的培养模式。
Abstract:Geological guarantee is the indispensable basis for the safe, efficient and green mining of coal mine. The primary objective of this paper is to present a detailed review of the construction progress of China’s geological guarantee system over the past three decades, covering the key aspects of its intention, basic theoretical research, and technological and equipment development. The statement outlines five complex technical problems faced by the geological guarantee system in the context of green and intelligent mining, which include the low level of intelligence in geological information collection and interpretation, the need to improve advance prediction reliability based on low exploration accuracy and low comprehensive research degree of static geological conditions, the challenge of using a single real-time online monitoring method for dynamic geological information and the lack of technical standards for disaster response evaluation, the low technical level of geological information management and multi-source heterogeneous information fusion, and the inadequacy of 3D geological modelling for achieving the required level of geological transparency in intelligent mining. The paper identifies the crucial areas in which the geological guarantee system of a coal mine must be studied to achieve accurate geological prediction and mine geological transparency in the future, highlighting the need for breakthroughs in fine geological exploration and accurate geological representation. The crucial areas are listed as follows: (1) The applied basic research of mine geophysical exploration should be strengthened constantly aiming at the establishment of the multi-parameter response template for the full-space geophysical field with mine geological characteristics; (2) Demonstration research should be conducted for the pilot of low-altitude unmanned aerial vehicles (UAVs) and intelligent robot for data collection in geological exploration and monitoring. (3) Study on the occurrence and distribution law of mine geological body and the deformation of overburden rock in the mining-affected area should be strengthened, to seek the method for precisely distinguishing the “geological anomaly” and to research on the theory and method of quantitative description and zoned comprehensive prediction and evaluation of intelligent mining geological conditions based on mine geology and engineering characteristics. (4) The transferring format and specifications for database construction of multi-source and multi-dimension heterogeneous geological data volume, as well as the quantitative evaluation method of geological transparency of working face, should be studied to develop the fusion-sharing and 3D visualization technology of multi-source heterogeneous geological information, and the integrated modeling and automatic updating technology of 3D geological geometry-attributes based on geological big data. At the same time, the training mode of hierarchical talents was put forward.
-
煤矿井下煤与瓦斯突出、突水是煤矿生产过程中的主要灾害,在碎软煤层中尤为突出,这类煤矿的数量很多,占比也很高[1]。利用近水平定向钻孔抽采瓦斯、进行探放水是保障煤矿安全的有效方法[2-3]。煤矿碎软煤层煤质软、破碎、透气性较差,顺煤层钻进时煤层处于欠平衡状态,尤其采用孔底液动螺杆定向钻进施工时,经常出现坍塌卡钻、沉渣卡钻,造成卡钻埋钻事故[4-5];采用水力驱动螺杆马达的高压水也极容易造成塌孔无法成孔[6-8]。针对碎软煤层定向钻进遇到的问题,科技人员开展了大量的研究工作,在碎软煤层钻进中,采用风压空气钻进技术[9],解决上述问题,在淮南、淮北等矿区碎软煤层中广泛应用,最深孔达到了400多m,已成为碎软煤层钻孔施工的主要技术,取得了良好的应用效果。电磁波随钻测量技术既适用液动螺杆钻进,还适用风动螺杆钻进,可以弥补液动随钻测量系统的不足,是解决钻孔横穿软煤工作面的设备保障[10-11]。
电磁波随钻测量技术主要是依靠地层介质和钻杆来进行数据传输,在孔中将测量的数据加载到电磁波载波信号上,电磁波载波信号沿着地层和钻杆向孔口传播,在孔口将检测到的电磁波中的测量信号卸载解码、计算得到姿态测量数据[12-13]。
电磁波随钻测量技术的姿态测量精度直接决定了定向钻孔的施工效果,姿态测量精度偏差大,会对钻孔定向指导造成极大的影响。笔者将无线电磁波全过程影响姿态精度的因素逐条进行论述分析,提出影响姿态精度的因素和相应的解决对策方案,确保电磁波随钻测量系统的测量精度满足定向钻进要求。
1 钻孔姿态测量与定向钻进技术
钻孔姿态可以用倾角和方位角2个参数来确定。用仪器轴线OP与水平面的锐夹角$ \beta $表示倾斜角,称$ \beta $为倾角。物体轴线OP在水平面上的投影OP'与地球磁北方向ON顺时针计量的夹角$ \alpha $,即为磁方位角$ \alpha $(磁方位角经过大地磁偏角校正后为方位角)[14],如图 1所示。
钻孔轨迹即钻头在钻进过程中形成的空间钻孔路径。以测点为基础绘制的钻孔轨迹基本为折线,钻孔轨迹与实际轨迹吻合程度取决于测点的密集程度。在造斜组合钻具中,弯曲工具的2个轴线组成的平面,定义为工具面,工具面与铅垂面夹角为工具面向角,定义沿钻进方向顺时针旋转增加,如图 2中所示。
电磁波随钻测量系统的姿态测量组件是由三轴磁通门传感器和三轴重力加速度计组成,3个相互垂直的坐标轴分别安装加速度传感器和磁传感器,构成姿态测量系统,通过坐标旋转确定唯一的钻孔姿态参数[15-16],如图 3所示。
加速度传感器和磁传感器测量不同方向上的重力分量和磁场分量,根据下面4个公式计算得出倾角$ \beta $、方位角$ \alpha $和工具面角$ \gamma $数值[17]。
$$ \beta {\text{ = }}\arctan \frac{{ - {G_y}}}{{\sqrt {\left( {G_x^2 + G_z^2} \right)} }} \beta \in \left[ { - \frac{{\text{π }}}{{\text{2}}}, \frac{{\text{π }}}{{\text{2}}}} \right] $$ (1) $$ \alpha = \arctan \left[ {\frac{{{G_0}\left( {{B_z}{G_x} - {B_x}{G_z}} \right)}}{{{B_y}\left( {G_x^2 + G_z^2} \right) - {G_y}\left( {{B_x}{G_x} - {B_z}{G_z}} \right)}}} \right] $$ (2) $$ \gamma = \arctan \left( {\frac{{ - {G_x}}}{{ - {G_z}}}} \right) \gamma \in \left[ {0, 2{\text{π }}} \right] $$ (3) $$ {G_0} = \sqrt {G_x^2 + G_y^2 + G_z^2} $$ (4) 式中:Gx、Gy、Gz为加速度传感器所在轴的3个分量测量值,m/s2;Bx、By、Bz为地磁场的3个分量测量值,T;G0为重力加速度值,m/s2。
定向钻进过程中,一般3 m或6 m测量一次钻孔轨迹,轨迹计算时,将2个相邻测点的姿态值的平均值作为进尺的姿态值计算直线段,设测点Pi的坐标($ {X_i} $, $ {Y_i} $, $ {Z_i} $),则其坐标计算如下[18]。
$$ {X_i} = \sum\limits_{i = 0}^n {\Delta L\cos \frac{{{\beta _i} + {\beta _{i - 1}}}}{2}} \cos \left( {\frac{{{\alpha _i} + {\alpha _{i - 1}}}}{2} - \lambda } \right) $$ (5) $$ {Y_i} = \sum\limits_{i = 0}^n {\Delta L\cos \frac{{{\beta _i} + {\beta _{i - 1}}}}{2}} \sin \left( {\frac{{{\alpha _i} + {\alpha _{i - 1}}}}{2} - \lambda } \right) $$ (6) $$ {Z_i} = \sum\limits_{i = 0}^n {\Delta L\sin \frac{{{\beta _i} + {\beta _{i - 1}}}}{2}} $$ (7) 式中:ΔL为测点之间的距离,m;λ为主设计方位角,(°)。
定向钻进是通过改变造斜件螺杆弯角工具面来造斜,利用钻孔造斜轨迹设计来实现,如图 4所示。
按照常规定义,当工具面调整到Ⅰ、Ⅳ区域里时,倾角增大,工具面调整到Ⅱ、Ⅲ区域里时,倾角减小[19-20]。当工具面向角为0°或180°时,造斜强度最大。当工具面调整到Ⅰ、Ⅱ区域里时,方位向右,工具面调整到Ⅲ、Ⅳ区域里时,方位角向左。当工具面向角为90°或270°时,则左右强度最大。
2 设计精度影响因素与解决方案
无线电磁波随钻测量系统姿态测量精度影响因素可分为测量短节设计精度和系统应用引入误差精度。测量短节设计精度主要有以下方面:
① 传感器和基准电源器件自身精度受到元器件制作时工艺不同引起的误差,选择不同的测量传感器,其稳定性、温度特性、响应时间及抗冲击能力等都不同,这些差异都会影响传感器测量精度。因此,设计时,应优先采用品牌较好的器件,必要时对批次进行测试核准。
② 测斜仪结构系统误差主要是由于测量系统传感器敏感轴的不正交、与仪器坐标轴不重合等因素引起的,不正交角和不重合角实际都是小角度,很难或几乎不能通过测量确定,而且是非线性问题,通过分析,采用最优化技术的无约束条件下多变量函数的寻优方法,变量轮换法确定不正交角,单纯形加速法确定不重合角,能有效地确定这些参数,从而达到校正精度[21]。
③ 随机振动和采集不当带来的误差由于测量传感器在采集时,受到瞬间干扰或特殊振动等,使得采集到的样点数据不准从而带来误差。这种误差需要建立采集样点数据判别准则和一次多样点的方式采集数据,进行判别、剔除解决。具体是采用软件设计同一点静态下采集多次样点数据,对采集样点异常点自动剔除,对采集样点稳定部分的数据再进行均值处理,理论上,测量数据越多,准确率越高。
④ 传感器干扰传感器在使用、运输过程中,尤其是磁传感器抗磁干扰性能差,容易受到外界强磁环境影响,发生超差的情况。这种情况一般在测量短节设计时,在传感器外围增加消磁电路和采用误差修正来解决外界对传感器的影响。
⑤ 普通钢质钻杆对测量短节的干扰钢质钻杆距离测量短节较近时,会使测量短节周围的磁环境发生畸变,测量短节测量的精度也会受到影响。通常采用的办法是增加上下无磁钻杆,在设计时根据钻杆的磁性情况以及测量短节对应精度要求,确定无磁钻杆配备长度,减少误差。
⑥ 测量短节标定在出厂时对测量短节进行标定,用于补偿磁传感器、加速度传感器因安装、漂移和随机误差等引入的误差[22]。出厂测量短节标定的精度要求、标定现场磁环境、标定台架、标定数据密度等都影响着数据的精度。这个环节是测量短节出厂前必备的环节,也是测量短节出厂前的综合校准环节。
以上6种影响因素采取合理的处置方法,在产品结构和工艺定型后,也就确定了测量短节系统的重复误差水平。
3 钻场实钻影响因素及数据分析
在煤矿井下现场实钻时,测量短节与无磁钻杆管间的同轴度也会影响探管测量精度,这些影响因素有的还导致较严重精度误差,以往认为测量短节精度就是轨迹测量精度,致使这部分误差容易被忽视。当这种情况严重时,测量结果会被判定为测量系统故障。这也就是常说的“孔中不准,标定架上准”的原因。
如某矿井实施无线电磁波定向钻进作业,在钻进过程中,发现相邻的不同测量点倾角数据变化过大。通常钻孔倾角弯曲强度应不大于0.05 rad/6 m (3°/6 m);钻孔方位角弯曲强度应不大于0.035 rad/6 m(2°/6 m)。现场测量数据不符合弯曲强度要求,钻孔测量人员对测试数据分析后,质疑无线电磁波随钻测量系统的可靠性。
测试人员收集原始数据、测试情况和井下工况条件。在井下钻场,现有钻孔深度(100 m)位置,钻机处于未给进状态,连续多圈旋转钻具实施姿态数据测量。现场采用感应线圈接收方式,随机停机,静置测量了共26组不同工具面的倾角、方位角,数据见表 1。
表 1 同一位置不同工具面实测姿态数据Table 1. The actual attitude data of different tool surfaces at the same position序号 工具面向角/(°) 倾角/(°) 方位角/(°) 1 357.7 –13.5 78.5 2 25.0 –13.6 78.6 3 46.6 –13.7 78.6 4 71.6 –13.8 78.5 5 95.4 –13.8 78.3 6 129.5 –13.6 78.1 7 185.0 –12.8 77.7 8 155.6 –13.4 78.0 9 234.5 –12.2 77.6 10 299.9 –12.6 78.1 11 325.3 –13.0 78.5 12 183.5 –12.8 77.7 13 241.3 –12.2 77.5 14 333.5 –13.2 78.6 15 19.1 –13.6 78.6 16 228.6 –12.2 77.5 18 224.0 –12.3 77.5 19 20.4 –13.6 78.6 20 143.9 –13.5 77.9 21 236.0 –12.2 77.4 22 335.3 –13.2 78.6 23 62.8 –13.9 78.4 24 147.2 –13.4 77.9 25 252.4 –12.2 77.5 26 348.6 –13.4 78.6 由于是随机停机,不同圈数的工具面向角值也是随机产生,实测数据在图表中较为分散,不利于分析。因此,对所有的数据按照工具面向角数据从小到大进行了排列,再按照工具面变化分别对倾角和方位角的数据变化趋势进行成图,如图 5所示。
通过数据分析及曲线,可以看到:
① 尽管是不同圈数的数据,但倾角、方位角的误差变化随着工具面变化有着明显的规律。即倾角在工具面向角70°时呈现低谷,在250°附近呈现高峰。方位角在工具面向角220°附近呈现低谷,在30°呈现高峰。波峰和波谷工具面相差约为180°,能够呈现出较为明显的规律和走势。
② 按照不同时刻测量的数据来分析,不同圈数相近工具面向角测点的倾角最大误差不超过0.1°(工具面向角62.8°和71.6°),方位角最大误差为0.2°(工具面向角234.5°和236°)。可以看出,无线电磁波系统的重复测量精度对照本文表述的6种设计误差,补偿处理较好,完全满足无线电磁波测量系统设计需求。
针对图 5中的测点变化趋势,分析造成上述原因,初步判定是由于外钻杆与测量短节不同轴造成,不同轴会使图 2和图 3所示模型中的Y轴不垂直于X轴与Z轴的平面。此时,利用式(1)—式(7)计算得出的姿态和轨迹变化量也就不准确。
现场提钻查看测量系统,测量短节与无磁钻杆四周受力不均,拆装时有憋劲情况,主要原因是无磁钻杆变形或内部的测量短节变形,因此,测量短节与无磁钻杆的同轴度已经无法保证。
4 姿态数据误差修正
根据上述分析,数据修正主要依据倾角、方位角的变化趋势,综合考虑变形的原因,建议在无线电磁波测量系统测量工艺中,增加现场校准环节。校准是在钻孔开孔完成后,将电磁波探管随钻进入孔中,正式钻进前,对无线电磁波探管姿态测量进行校准。校准方法是在不给进情况下,在同一钻孔深度(> 10 m),旋转钻具,在工具面向角0°~360°范围内多次测量倾角、方位角,记录并建立姿态校准数据表。建议标校准数据表中测点数不少于12个点,且尽可能均匀分布到钻杆轴向垂直平面的4个象限(即约每30°,布置1个测点)。考虑到现场情况和操作人员的技术能力,数据修正方式可选择查表补偿法和拟合函数法。
查表补偿法是根据姿态校准数据表,建立工具面的补偿表。补偿表的基值是数据波动的中心值,基值减去校准数据表中不同工具面的倾角和方位角得到的数值确定为补偿值。正常实钻测量时,根据工具面的位置就近查表,在测量的数值上加补偿值即可进行误差修正。这种修正方法,对测点的均匀度和数据要求较高,测点均匀度和数据多少决定了修正的精度高低。该方法虽然操作难度小,但每次需要查表校准。
拟合函数法是利用数据波动规律建立补偿函数,无磁钻杆和测量短节不同轴具有旋转特性,其规律与正弦函数较为接近,因此,采用拟合正弦函数进行补偿。倾角、方位角修正函数的基本幅值为倾角、方位角各自变化的平均值,当标定点在工具面0°~360°范围内分布均匀波峰波谷明显可见时,也可采用1/2波峰和波谷差值。倾角、方位角误差波动值分别按照下面公式计算。
$$ {A_{\Delta \beta }} = \left( {{A_{\beta \max }} - {A_{\beta \min }}} \right) - {A_{\beta \min }} $$ (8) $$ {A_{\Delta \alpha }} = \left( {{A_{\alpha \max }} - {A_{\alpha \min }}} \right) - {A_{\alpha \min }} $$ (9) 式中:$ {A_{\Delta \beta }} $为倾角测量误差波动值,(°);$ {A_{\beta \max }} $、$ {A_{\beta \min }} $分别为倾角测量最大值、最小值,(°);$ {A_{\Delta \alpha }} $方位角测量误差波动值,(°);$ {A_{\alpha \max }} $、$ {A_{\alpha \min }} $分别为方位角测量最大值、最小值,(°)。
初相角的选择是利用角度变化趋势选定,初相角初步选定后,利用建立的数据进行测试,选择修正后的幅度变化最小时的相角作为函数的初相角。基值、波动值、初相角确定后,修正函数也就确定。
$$ {\beta _{\text{c}}} = {\beta _{\text{b}}} + \frac{1}{2}{A_{\Delta \beta }}\sin \left( {x + {\varphi _\beta }} \right) $$ (10) $$ {\alpha _{\text{c}}} = {\alpha _{\text{b}}} + \frac{1}{2}{A_{\Delta \alpha }}\sin \left( {x + {\varphi _\alpha }} \right) $$ (11) 式中:$ {\beta _{\text{c}}} $、$ {\beta _{\text{b}}} $分别为标定后、实测的倾角数据,(°);$ {\alpha _{\text{c}}} $、$ {\alpha _{\text{b}}} $分别为标定后、实测的方位角数据,(°);$ {\varphi _\beta } $、$ {\varphi _\alpha } $分别为拟合函数法修正的倾角、方位角初相角,rad。
拟合函数法技术分析难度稍大,但函数确定后,可以导入到定向钻进轨迹设计计算表中,直接按照设计轨迹进行定向钻进,不再需要其他干预。
利用拟合函数法对现场实测的数据进行修正测试。将表 1中的姿态数据代入式(8)、式(9)中,得到倾角补偿函数的幅值为1.6,方位角补偿函数的幅值为1.1。倾角的初相角选择$ \frac{{\text{π }}}{{10}} $,方位角的初相角选择1。将补偿数值和初相角代入式(10)、式(11)计算得到补偿后数据,计算结果见表 2。
表 2 姿态数据修正前后对比Table 2. Comparison table of attitude data before and after correction工具面向角/(°) 倾角/(°) 方位角/(°) 修正前 修正后 修正前 修正后 19.1 –13.6 –13.12 78.6 78.07 20.4 –13.6 –13.10 78.6 78.06 25.0 –13.6 –13.05 78.6 78.05 46.6 –13.7 –12.98 78.6 78.07 62.8 –13.9 –13.11 78.4 77.92 71.6 –13.8 –13.00 78.5 78.07 87.8 –13.9 –13.13 78.3 77.99 95.4 –13.8 –13.07 78.3 78.05 129.5 –13.6 –13.17 78.1 78.17 143.9 –13.5 –13.25 77.9 78.10 147.2 –13.4 –13.20 77.9 78.13 155.6 –13.4 –13.31 78.0 78.30 183.5 –12.8 –13.09 77.7 78.18 185.0 –12.8 –13.11 77.7 78.19 224.0 –12.3 –13.01 77.5 78.04 228.6 –12.2 –12.93 77.5 78.03 228.6 –12.2 –12.93 77.5 78.03 234.5 –12.2 –12.96 77.6 78.11 236.0 –12.2 –12.97 77.4 77.91 241.3 –12.2 –12.99 77.5 77.98 252.4 –12.2 –13.00 77.5 77.92 299.9 –12.6 –13.14 78.1 78.13 325.3 –13.0 –13.23 78.5 78.29 333.5 –13.2 –13.32 78.6 78.32 335.3 –13.2 –13.29 78.6 78.30 348.6 –13.4 –13.31 78.6 78.21 357.7 –13.5 –13.28 78.5 78.05 修正后的倾角、方位角随工具面向角变化趋势,如图 6所示。
从表 2和图 6中可以看出,补偿后倾角精度达到±0.2°,方位角精度达到±0.2°。倾角、方位角在同一位置变化很小,基本不受工具面旋转的影响。补偿后的现场采集数据达到了定向钻进的精度要求。
5 结论
a. 明确了无线电磁波随钻测量系统出厂前器件自身精度、结构系统误差、随机振动和采集不当、传感器干扰、普通钻杆干扰、测量短节标定等的6种影响因素,并给出了相应的处理方法。
b. 根据现场测试数据分析,发现不同工具面倾角和方位角数据具有明显的旋转变化规律,确定误差原因是测量短节与无磁钻杆不同轴造成的;根据数据特性提出现场校准数据采集方法和技术要求。通过数据分析,纠正短节精度就是钻孔测量精度的错误认识。针对不同轴问题,建议在现场仪器组装完成入孔后,对孔中测量部分进行校正,确保仪器测量精度。
c. 根据不同轴造成的因素精度考虑到钻场的条件和操作人员的技术能力,提出查表补偿法和拟合函数法两种修正方法,就补偿方法和计算给出说明。现场人员依据情况选择合适的校准方法,能够使得测量的数据更加准确。倾角和方位角校准修正后,精度均控制在±0.2°,满足碎软煤层轨迹控制精度要求。
d. 本次在无线电磁波随钻测量施工工艺上,增加校准流程对不同轴进行补偿,但主要依靠人员手动事后去补偿,仅解决了施工现场遇到的问题,没有达到主动预防目的,后续将在测量软件中增加现场实测前自标定环节,完成入孔后自动标定,提高随钻测量精度。
-
[1] 陈浮,于昊辰,卞正富,等. 碳中和愿景下煤炭行业发展的危机与应对[J]. 煤炭学报,2021,46(6):1808−1820. DOI: 10.13225/j.cnki.jccs.2021.0368 CHEN Fu,YU Haochen,BIAN Zhengfu,et al. How to handle the crisis of coal industry in China under the vision of carbon neutrality[J]. Journal of China Coal Society,2021,46(6):1808−1820. DOI: 10.13225/j.cnki.jccs.2021.0368
[2] 谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211. XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211.
[3] 彭苏萍. 建立和发展我国煤矿高产高效矿井地质保障系统[C]//中国煤炭学会矿井地质专业委员会年会报告. 上海, 1992. [4] 彭苏萍. 中国煤矿高产高效矿井地质保障系统[J]. 河北煤炭,1999(增刊1):1−4. PENG Suping. Geological assurance system of high yield and high efficiency coal mine in China[J]. Hebei Coal,1999(Sup.1):1−4.
[5] 程学丰,刘盛东,唐修义. 我国矿井地质工作的研究现状与展望[J]. 淮南工业学院学报,2002,22(增刊1):1−3. CHENG Xuefeng,LIU Shengdong,TANG Xiuyi. Research status and prospect of mine geological work in China[J]. Journal of Huainan Institute of Technology,2002,22(Sup.1):1−3.
[6] 韩德馨,彭苏萍. 我国煤矿高产高效矿井地质保障系统研究回顾及发展构想[J]. 中国煤炭,2002,28(2):5−9. DOI: 10.3969/j.issn.1006-530X.2002.02.001 HAN Dexin,PENG Suping. Review and outlook for mine geological assurance system for China’ s high−efficiency coal mines[J]. China Coal,2002,28(2):5−9. DOI: 10.3969/j.issn.1006-530X.2002.02.001
[7] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331−2345. PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331−2345.
[8] 国家发展和改革委员会, 国家能源局, 应急管理部, 等. 关于加快煤矿智能化发展的指导意见[N]. 中国煤炭报, 2020-03-05(002). [9] 王佟,张博,王庆伟,等. 中国绿色煤炭资源概念和内涵及评价[J]. 煤田地质与勘探,2017,45(1):1−8. DOI: 10.3969/j.issn.1001-1986.2017.01.001 WANG Tong,ZHANG Bo,WANG Qingwei,et al. Green coal resources in China:Concept,characteristics and assessment[J]. Coal Geology & Exploration,2017,45(1):1−8. DOI: 10.3969/j.issn.1001-1986.2017.01.001
[10] 国家市场监督管理总局, 中国国家标准化管理委员会. 煤矿绿色矿山评价指标: GB/T 37767—2019[S]. 北京: 中国标准出版社, 2020. [11] 袁亮,张农,阚甲广,等. 我国绿色煤炭资源量概念、模型及预测[J]. 中国矿业大学学报,2018,47(1):1−8. DOI: 10.13247/j.cnki.jcumt.000792 YUAN Liang,ZHANG Nong,KAN Jiaguang,et al. The concept,model and reserve forecast of green coal resources in China[J]. Journal of China University of Mining & Technology,2018,47(1):1−8. DOI: 10.13247/j.cnki.jcumt.000792
[12] LI Huoyin. Major and minor structural features of a bedding shear zone along a coal seam and related gas outburst,Pingdingshan Coalfield,northern China[J]. International Journal of Coal Geology,2001,47(2):101−113. DOI: 10.1016/S0166-5162(01)00031-3
[13] 王恩营,刘明举,魏建平. 构造煤成因–结构–构造分类新方案[J]. 煤炭学报,2009,34(5):656−660. DOI: 10.3321/j.issn:0253-9993.2009.05.016 WANG Enying,LIU Mingju,WEI Jianping. New genetic–texture–structure classification system of tectonic coal[J]. Journal of China Coal Society,2009,34(5):656−660. DOI: 10.3321/j.issn:0253-9993.2009.05.016
[14] 张子敏,吴吟. 中国煤矿瓦斯赋存构造逐级控制规律与分区划分[J]. 地学前缘,2013,20(2):237−245. ZHANG Zimin,WU Yin. Tectonic−level−control rule and area−dividing of coalmine gas occurrence in China[J]. Earth Science Frontiers,2013,20(2):237−245.
[15] 姜波,琚宜文. 构造煤结构及其储层物性特征[J]. 天然气工业,2004,24(5):27−29. DOI: 10.3321/j.issn:1000-0976.2004.05.009 JIANG Bo,JU Yiwen. Tectonic coal structure and its petrophysical features[J]. Natural Gas Industry,2004,24(5):27−29. DOI: 10.3321/j.issn:1000-0976.2004.05.009
[16] 张妙逢,贾茜. 构造变形对煤储层孔隙结构与比表面积的影响研究[J]. 中国煤炭地质,2013,25(7):1−4. DOI: 10.3969/j.issn.1674-1803.2013.07.01 ZHANG Miaofeng,JIA Qian. Impacts from tectonic deformation on coal reservoir pore geometry and specific surface[J]. Coal Geology of China,2013,25(7):1−4. DOI: 10.3969/j.issn.1674-1803.2013.07.01
[17] 张小兵,郇璇,张航,等. 不同煤体结构煤基活性炭微观结构与甲烷吸附性能[J]. 中国矿业大学学报,2017,46(1):155−161. ZHANG Xiaobing,HUAN Xuan,ZHANG Hang,et al. Microstructure and methane adsorption of coal–based activated carbons with different coal body structures[J]. Journal of China University of Mining & Technology,2017,46(1):155−161.
[18] 郭东鑫,汪威,张华莲,等. 松藻矿区原生结构煤与构造煤物性差异研究[J]. 煤炭技术,2019,38(4):103−105. GUO Dongxin,WANG Wei,ZHANG Hualian,et al. Study on characteristic differences of primary structured coal and structural coal in Songzao mining area[J]. Coal Technology,2019,38(4):103−105.
[19] 姜波,李明,程国玺,等. 矿井构造预测及其在瓦斯突出评价中的意义[J]. 煤炭学报,2019,44(8):2306−2317. JIANG Bo,LI Ming,CHENG Guoxi,et al. Mine geological structure prediction and its significance for gas outburst hazard evaluation[J]. Journal of China Coal Society,2019,44(8):2306−2317.
[20] 姜波,秦勇,琚宜文,等. 构造煤化学结构演化与瓦斯特性耦合机理[J]. 地学前缘,2009,16(2):262−271. DOI: 10.3321/j.issn:1005-2321.2009.02.020 JIANG Bo,QIN Yong,JU Yiwen,et al. The coupling mechanism of the evolution of chemical structure with the characteristics of gas of tectonic coals[J]. Earth Science Frontiers,2009,16(2):262−271. DOI: 10.3321/j.issn:1005-2321.2009.02.020
[21] 姜波,李明,屈争辉,等. 构造煤研究现状及展望[J]. 地球科学进展,2016,31(4):335−346. DOI: 10.11867/j.issn.1001-8166.2016.04.0335. JIANG Bo,LI Ming,QU Zhenghui,et al. Current research status and prospect of tectonically deformed coal[J]. Advances in Earth Science,2016,31(4):335−346. DOI: 10.11867/j.issn.1001-8166.2016.04.0335.
[22] 贾建称, 吴艳, 吴敏杰, 等. 碎软低渗煤层煤层气开发地质条件评价及工程部署优化[R]. 西安: 中煤科工集团西安研究院有限公司, 2020. [23] 孙劲光,高天鹏. 地质断层三维建模的表达式方法[J]. 地球信息科学学报,2016,18(10):1322−1331. SUN Jinguang,GAO Tianpeng. The research of expression method on geological fault modeling[J]. Journal of Geo–information Science,2016,18(10):1322−1331.
[24] WANG Hongwei,WANG Zeliang,JIANG Yaodong,et al. New approach for the digital reconstruction of complex mine faults and its application in mining[J]. International Journal of Coal Science & Technology,2022,9:43.
[25] 贾建称,巩泽文,靳德武,等. 煤炭地质学“十三五”主要进展及展望[J]. 煤田地质与勘探,2021,49(1):32−44. DOI: 10.3969/j.issn.1001-1986.2021.01.004 JIA Jiancheng,GONG Zewen,JIN Dewu,et al. The main progress in the 13th Five–Year Plan and the prospect of coal geology[J]. Coal Geology & Exploration,2021,49(1):32−44. DOI: 10.3969/j.issn.1001-1986.2021.01.004
[26] 陈红影. 我国矿井水害的类型划分与水文结构模式研究[D]. 徐州: 中国矿业大学, 2019. CHEN Hongying. Study on the type classification and hydrological structure model of mine water hazards in China[D]. Xuzhou: China University of Mining & Technology, 2019.
[27] 杨飞. 山西省老空突水的水文地质结构模式与致灾机制[D]. 徐州: 中国矿业大学, 2019. YANG Fei. Goaf–water inrush models of hydrogeologic structure and its disaster–mechanism in Shanxi Province[D]. Xuzhou: China University of Mining & Technology, 2019.
[28] 侯宪港,杨天鸿,李振拴,等. 山西省老空水害类型及主要特征分析[J]. 采矿与安全工程学报,2020,37(5):1009−1018. HOU Xiangang,YANG Tianhong,LI Zhenshuan,et al. Types and main characteristics of old goaf water disaster in Shanxi Province[J]. Journal of Mining & Safety Engineering,2020,37(5):1009−1018.
[29] 武强,许珂,张维. 再论煤层顶板涌(突)水危险性预测评价的“三图–双预测法”[J]. 煤炭学报,2016,41(6):1341−1347. WU Qiang,XU Ke,ZHANG Wei. Further research on“three maps–two predictions”method for prediction on coal seam roof water bursting risk[J]. Journal of China Coal Society,2016,41(6):1341−1347.
[30] 李超峰. 黄陇煤田综放采煤导水裂隙带高度经验公式[J]. 煤炭技术,2021,40(6):119−122. LI Chaofeng. Formula for predicting height of water flowing fractured zone caused during fully–mechanized caving mining in Huanglong Coalfield[J]. Coal Technology,2021,40(6):119−122.
[31] 李超峰. 煤层顶板含水层涌水危险性评价方法[J]. 煤炭学报,2020,45(增刊1):384−392. LI Chaofeng. Method for evaluating the possibility of water inrush from coal seam roof aquifer[J]. Journal of China Coal Society,2020,45(Sup.1):384−392.
[32] 曹海东. 煤层开采覆岩离层水体致灾机理与防控技术研究[D]. 北京: 煤炭科学研究总院, 2018. CAO Haidong. Study on prevention & control technology and disaster−caused mechanism of bed separation water body in overburden strata during coal seam mining[D]. Beijing: China Coal Research Institute, 2018.
[33] 张培森,朱慧聪,吴玉华,等. 我国煤矿离层涌突水致灾机理及其防控关键技术研究进展[J]. 工程地质学报,2021,29(4):1057−1070. ZHANG Peisen,ZHU Huicong,WU Yuhua,et al. State−of−the−art of mechanism of water inrush from bed separation and key technology of prevention and pre−control in China[J]. Journal of Engineering Geology,2021,29(4):1057−1070.
[34] 虎维岳,赵春虎. 基于充水要素的矿井水害类型三线图划分方法[J]. 煤田地质与勘探,2019,47(5):1−8. DOI: 10.3969/j.issn.1001-1986.2019.05.001 HU Weiyue,ZHAO Chunhu. Trilinear chart classification method of mine water hazard type based on factors of water recharge[J]. Coal Geology & Exploration,2019,47(5):1−8. DOI: 10.3969/j.issn.1001-1986.2019.05.001
[35] 陈晨. 乌审旗–横山地区中侏罗世沉积特征与控水规律研究[D]. 北京: 煤炭科学研究总院, 2018. CHEN Chen. Study on sedimentary characteristics and water control laws of the middle Jurassic in Uxin Banner–Hengshan Region[D]. Beijing: China Coal Research Institute, 2018.
[36] 王洋,武强,丁湘,等. 深埋侏罗系煤层顶板水害源头防控关键技术[J]. 煤炭学报,2019,44(8):2449−2459. WANG Yang,WU Qiang,DING Xiang,et al. Key technologies for prevention and control of roof water disaster at sources in deep Jurassic seams[J]. Journal of China Coal Society,2019,44(8):2449−2459.
[37] 冯洁,侯恩科,王苏健,等. 陕北侏罗系沉积控水规律与沉积控水模式[J]. 煤炭学报,2021,46(5):1614−1629. FENG Jie,HOU Enke,WANG Sujian,et al. Law and model of Jurassic sedimentary water control in northern Shaanxi Province[J]. Journal of China Coal Society,2021,46(5):1614−1629.
[38] 董书宁,姬亚东,王皓,等. 鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J]. 煤炭学报,2020,45(7):2367−2375. DONG Shuning,JI Yadong,WANG Hao,et al. Prevention and control technology and application of roof water disaster in Jurassic coal field of Ordos Basin[J]. Journal of China Coal Society,2020,45(7):2367−2375.
[39] 吴基文, 沈书豪, 葛春贵, 等. 构造极复杂煤炭采区水文地质条件立体探查与综合评价[M]. 北京: 科学出版社, 2019. [40] 王静雪,刘海松,邱梅. 煤层底板突水危险性评价的FDAHP–TOPSIS模型[J]. 采矿与岩层控制工程学报,2021,3(2):023528. WANG Jingxue,LIU Haisong,QIU Mei. FDAHP–TOPSIS model for evaluation of the water inrush risk from coal floors[J]. Journal of Mining and Strata Control Engineering,2021,3(2):023528.
[41] 胡彦博. 深部开采底板破裂分布动态演化规律及突水危险性评价[D]. 徐州: 中国矿业大学, 2020. HU Yanbo. Dynamic evolution law of fracture distribution and water inrush risk assessment in deep mining coal seam floor[D]. Xuzhou: China University of Mining & Technology, 2020.
[42] 刘守强,武强,李哲,等. 多煤层底板单一含水层矿区突水变权脆弱性评价与应用[J]. 中国矿业大学学报,2021,50(3):587−597. LIU Shouqiang,WU Qiang,LI Zhe,et al. Vulnerability evaluation and application of floor water inrush in mining area with multiple coal seams and single aquifer based on variable weight[J]. Journal of China University of Mining & Technology,2021,50(3):587−597.
[43] 袁超. 深部巷道围岩变形破坏机理与稳定性控制原理研究[D]. 湘潭: 湖南科技大学, 2017. YUAN Chao. Research on the mechanism and stability control of rock deformation and failure around deep tunnels[D]. Xiangtan: Hunan University of Science and Technology, 2017.
[44] 袁永,屠世浩,陈忠顺,等. 薄煤层智能开采技术研究现状与进展[J]. 煤炭科学技术,2020,48(5):1−17. DOI: 10.13199/j.cnki.cst.2020.05.001 YUAN Yong,TU Shihao,CHEN Zhongshun,et al. Current situation and development of intelligent mining technology for thin coal seams[J]. Coal Science and Technology,2020,48(5):1−17. DOI: 10.13199/j.cnki.cst.2020.05.001
[45] 王国法,庞义辉. 特厚煤层大采高综采综放适应性评价和技术原理[J]. 煤炭学报,2018,43(1):33−42. DOI: 10.13225/j.cnki.jccs.2017.4200 WANG Guofa,PANG Yihui. Full–mechanized coal mining and caving mining method evaluation and key technology for thick coal seam[J]. Journal of China Coal Society,2018,43(1):33−42. DOI: 10.13225/j.cnki.jccs.2017.4200
[46] 王国法,庞义辉,任怀伟,等. 煤炭安全高效综采理论、技术与装备的创新和实践[J]. 煤炭学报,2018,43(4):903−913. DOI: 10.13225/j.cnki.jccs.2017.1705 WANG Guofa,PANG Yihui,REN Huaiwei,et al. Coal safe and efficient mining theory,technology and equipment innovation practice[J]. Journal of China Coal Society,2018,43(4):903−913. DOI: 10.13225/j.cnki.jccs.2017.1705
[47] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010. [48] 许家林. 岩层采动裂隙演化规律与应用[M]. 徐州: 中国矿业大学出版社, 2016. [49] 许家林,钱鸣高,朱卫兵. 覆岩主关键层对地表下沉动态的影响研究[J]. 岩石力学与工程学报,2005,24(5):787−791. DOI: 10.3321/j.issn:1000-6915.2005.05.009 XU Jialin,QIAN Minggao,ZHU Weibing. Study on influences of primary key stratum on surface dynamic subsidence[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(5):787−791. DOI: 10.3321/j.issn:1000-6915.2005.05.009
[50] 许峰,靳德武,高振宇,等. 煤炭高强度重复采动下地下水资源漏失规律研究[J]. 煤炭科学技术,2022,50(11):131−139. DOI: 10.13199/j.cnki.cst.2021-0197 XU Feng,JIN Dewu,GAO Zhenyu,et al. Study on law of groundwater resources leakage under high intensity repeated mining[J]. Coal Science and Technology,2022,50(11):131−139. DOI: 10.13199/j.cnki.cst.2021-0197
[51] 屈庆栋,许家林,钱鸣高. 关键层运动对邻近层瓦斯涌出影响的研究[J]. 岩石力学与工程学报,2007,26(7):1478−1484. DOI: 10.3321/j.issn:1000-6915.2007.07.023 QU Qingdong,XU Jialin,QIAN Minggao. Study on influences of key strata movement on gas emissions of adjacent layers[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(7):1478−1484. DOI: 10.3321/j.issn:1000-6915.2007.07.023
[52] 乔伟,黄阳,袁中帮,等. 巨厚煤层综放开采顶板离层水形成机制及防治方法研究[J]. 岩石力学与工程学报,2014,33(10):2076−2084. QIAO Wei,HUANG Yang,YUAN Zhongbang,et al. Formation and prevention of water inrush from roof bed separation with full–mechanized caving mining of ultra thick coal seam[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(10):2076−2084.
[53] 许家林,秦伟,轩大洋,等. 采动覆岩卸荷膨胀累积效应[J]. 煤炭学报,2020,45(1):35−43. DOI: 10.13225/j.cnki.jccs.yg21.1866 XU Jialin,QIN Wei,XUAN Dayang,et al. Accumulative effect of overburden strata expansion induced by stress relief[J]. Journal of China Coal Society,2020,45(1):35−43. DOI: 10.13225/j.cnki.jccs.yg21.1866
[54] QU Qingdong,XU Jialin,WU Renlun,et al. Three–zone characterisation of coupled strata and gas behavior in multi–seam mining[J]. International Journal of Rock Mechanics and Mining Sciences,2015,78:91−98. DOI: 10.1016/j.ijrmms.2015.04.018
[55] 宋子岭,范军富,祁文辉,等. 露天煤矿绿色开采技术与评价指标体系研究[J]. 煤炭学报,2016,41(增刊2):350−358. SONG Ziling,FAN Junfu,QI Wenhui,et al. Study on the surface coal mine green mining technology and appraising index system[J]. Journal of China Coal Society,2016,41(Sup.2):350−358.
[56] 刘鹏. 露天煤矿绿色开采评价指标体系及建设路径研究[D]. 徐州: 中国矿业大学, 2020. LIU Peng. Study on evaluation index system and construction path of green mining in open–pit coal mine[D]. Xuzhou: China University of Mining & Technology, 2020.
[57] 许家林,朱卫兵,王晓振. 基于关键层位置的导水裂隙带高度预计方法[J]. 煤炭学报,2012,37(5):762−769. XU Jialin,ZHU Weibing,WANG Xiaozhen. New method to predict the height of fractured water–conducting zone by location of key strata[J]. Journal of China Coal Society,2012,37(5):762−769.
[58] 郑怀昌,李明. 地下采空区危险性及其分析[J]. 矿山压力与顶板管理,2005(4):127−129. ZHENG Huaichang,LI Ming. Risk analysis of underground goaf[J]. Ground Pressure and Strata Control,2005(4):127−129.
[59] 周亮. 髙瓦斯易自燃煤层釆空区遗煤自燃预警研究[D]. 淮南: 安徽理工大学, 2018. ZHOU Liang. Study on gob coal spontaneous combustion early warning in high gassy and spontaneous combustion coal seam[D]. Huainan: Anhui Uiversity of Science & Technology, 2018.
[60] LI Chuangjian,PENG Suping,ZHAO Jingtao,et al. Diffraction imaging using an adaptive phase filter[J]. Geophysical Prospecting,2020,68(1):164−177. DOI: 10.1111/1365-2478.12872
[61] LIU Qiannan,PENG Suping,ZHAO Jingtao,et al. 3D edge diffraction coefficients in the azimuth and emergence domain[J]. Geophysics,2019,84(2):T73−T82. DOI: 10.1190/geo2018-0010.1
[62] 陈优阔. 基于核方法的煤层厚度变化预测模型及应用研究[D]. 徐州: 中国矿业大学, 2016. CHEN Youkuo. Study of prediction models and their applications of the coal thickness change based on kernel method[D]. Xuzhou: China University of Mining & Technology, 2016.
[63] 曾爱平,张嘉玮,任恩明,等. 基于VMD和SVM的煤厚预测方法研究[J]. 煤田地质与勘探,2021,49(6):243−250. ZENG Aiping,ZHANG Jiawei,REN Enming,et al. Research on the coal thickness prediction method based on VMD and SVM[J]. Coal Geology & Exploration,2021,49(6):243−250.
[64] 杨震,芦俊,孟星浑,等. 薄煤层PP 波与PS波AVA地震响应特征[J]. 煤炭学报,2015,40(6):1435−1441. YANG Zhen,LU Jun,MENG Xinghun,et al. PP– and PS–wave AVA response characteristics for thin coal seam[J]. Journal of China Coal Society,2015,40(6):1435−1441.
[65] 王远,崔若飞,孙学凯,等. 利用地震反演信息划分煤体结构[J]. 煤田地质与勘探,2011,39(4):69−73. DOI: 10.3969/j.issn.1001-1986.2011.04.018 WANG Yuan,CUI Ruofei,SUN Xuekai,et al. Utilizing seismic inversion information in classifying coal structures[J]. Coal Geology & Exploration,2011,39(4):69−73. DOI: 10.3969/j.issn.1001-1986.2011.04.018
[66] 孙斌,杨敏芳,孙霞,等. 基于地震AVO 属性的煤层气富集区预测[J]. 天然气工业,2010,30(6):15−18. DOI: 10.3787/j.issn.1000-0976.2010.06.004 SUN Bin,YANG Minfang,SUN Xia,et al. Prediction of coalbed methane enrichment zones based on AVO attributes[J]. Natural Gas Industry,2010,30(6):15−18. DOI: 10.3787/j.issn.1000-0976.2010.06.004
[67] 彭苏萍,杜文凤,殷裁云,等. 基于AVO反演技术的煤层含气量预测[J]. 煤炭学报,2014,39(9):1792−1796. DOI: 10.13225/j.cnki.jccs.2014.8020 PENG Suping,DU Wenfeng,YIN Caiyun,et al. Coal–bed gas content prediction based on AVO inversion[J]. Journal of China Coal Society,2014,39(9):1792−1796. DOI: 10.13225/j.cnki.jccs.2014.8020
[68] 庄益明. 煤层小断层地震多属性精细解释方法研究[D]. 徐州: 中国矿业大学, 2018. ZHUANG Yiming. Study on the fine interpretation method of seismic multiattribute of small fault in coal seam[D]. Xuzhou: China University of Mining & Technology, 2018.
[69] 廉洁,李松营,滕吉文,等. 槽波探测技术的多领域应用与试验[J]. 河南理工大学学报(自然科学版),2017,36(5):35−40. DOI: 10.16186/j.cnki.1673-9787.2017.05.006 LIAN Jie,LI Songying,TENG Jiwen,et al. Multi–field application and experiment of channel wave detection technology[J]. Journal of Henan Polytechnic University (Natural Science),2017,36(5):35−40. DOI: 10.16186/j.cnki.1673-9787.2017.05.006
[70] GUO Changfang,YANG Zhen,CHANG Shuai,et al. Precise identification of coal thickness by channel wave based on a hybrid algorithm[J]. Applied Sciences,2019,9(7):1493. DOI: 10.3390/app9071493
[71] 蒋锦朋. 基于弹性波全波形反演的煤层异常体成像研究[D]. 武汉: 中国地质大学(武汉), 2018. JIANG Jinpeng. Imaging coal seam anomalies based on elastic full waveform inversion[D]. Wuhan: China University of Geosciences (Wuhan), 2018.
[72] 王增玉,杨德义,曹志勇,等. 构造煤及夹矸对煤层AVO正演模拟结果影响分析[J]. 地球物理学进展,2018,33(2):754−759. DOI: 10.6038/pg2018BB0160 WANG Zengyu,YANG Deyi,CAO Zhiyong,et al. Analysis on the influence of tectonic coal and parting on AVO forward modeling of coal seam[J]. Progress in Geophysics,2018,33(2):754−759. DOI: 10.6038/pg2018BB0160
[73] 姬广忠,吴荣新,张平松,等. 黏弹TI煤层介质3层模型Love槽波频散与衰减特征[J]. 煤炭学报,2021,46(2):566−577. DOI: 10.13225/j.cnki.jccs.XR20.1859 JI Guangzhong,WU Rongxin,ZHANG Pingsong,et al. Dispersion and attenuation characteristics of Love channel waves in the three–layer model of viscoelastic TI coal seam media[J]. Journal of China Coal Society,2021,46(2):566−577. DOI: 10.13225/j.cnki.jccs.XR20.1859
[74] 吴国庆, 马彦龙. 地质透明化工作面内多种异常体的槽波解释方法研究[J]. 煤炭科学技术, 2021: 1–13 [2021-11-11]. DOI: 10.13199/j.cnki.cst.2021–1016. WU Guoqing, MA Yanlong. Research on the interpretation method of channel waves for various abnormal bodies in geologically transparent working faces[J]. Coal Science and Technology, 2021: 1–13 [2021-11-11]. DOI: 10.13199/j.cnki.cst.2021–1016.
[75] 傅皓淳. 煤田槽波地震勘探中层析成像技术应用研究[D]. 北京: 中国地质大学(北京), 2015. FU Haochun. Study on seismic tomography in in−seam seismic exploration in coal field[D]. Beijing: China University of Geosciences (Beijing), 2015.
[76] 滕娟. 基于地球物理测井的煤体结构预测: 以沁水盆地南部煤储层为例[D]. 北京: 中国地质大学(北京), 2016. TENG Juan. Identification of coal structures with the aid of geophysical logs: A case study of the southern Qinshui Basin[D]. Beijing: China University of Geosciences (Beijing), 2016.
[77] 李存磊,杨兆彪,孙晗森,等. 多煤层区煤体结构测井解释模型构建[J]. 煤炭学报,2020,45(2):721−730. DOI: 10.13225/j.cnki.jccs.2019.0137 LI Cunlei,YANG Zhaobiao,SUN Hansen,et al. Construction of a logging interpretation model for coal structure from multi–coal seams area[J]. Journal of China Coal Society,2020,45(2):721−730. DOI: 10.13225/j.cnki.jccs.2019.0137
[78] 岳建华,刘树才,李志聃. 巷道顶、底板电测深曲线的自动反演解释[J]. 中国矿业大学学报,1995,24(3):62−67. YUE Jianhua,LIU Shucai,LI Zhidan. Automatic iterative inverse method of drift roof & floor sounding curves[J]. Journal of China University of Mining & Technology,1995,24(3):62−67.
[79] 岳建华,李志聃,刘世蕾. 层状介质中巷道底板电测深边界元法正演[J]. 煤炭学报,1998,23(4):347−351. YUE Jianhua,LI Zhidan,LIU Shilei. Modeling of floor sounding in roadway in a layered medium by boundary element method[J]. Journal of China Coal Society,1998,23(4):347−351.
[80] 岳建华, 刘树才. 矿井直流电法勘探[M]. 徐州: 中国矿业大学出版社, 2000. [81] 岳建华,杨海燕,苏本玉,等. 矿井张量电阻率法理论基础研究[J]. 煤炭学报,2020,45(7):2464−2471. DOI: 10.13225/j.cnki.jccs.DZ20.0938 YUE Jianhua,YANG Haiyan,SU Benyu,et al. Theoretical foundation of tensor measurement for mine resistivity method[J]. Journal of China Coal Society,2020,45(7):2464−2471. DOI: 10.13225/j.cnki.jccs.DZ20.0938
[82] 蒋宗霖,于景邨,孙伟涛. 矿井瞬变电磁法低阻体的全空间响应影响研究[J]. 煤炭科学技术,2012,40(8):107−110. DOI: 10.13199/j.cst.2012.08.110.jiangzl.002 JIANG Zonglin,YU Jingcun,SUN Weitao. Study on mine transient electromagnetic method affected to full space response of low resistance body[J]. Coal Science and Technology,2012,40(8):107−110. DOI: 10.13199/j.cst.2012.08.110.jiangzl.002
[83] 李飞,程久龙,温来福,等. 矿井瞬变电磁法电阻率偏低原因分析与校正方法[J]. 煤炭学报,2018,43(7):1959−1964. DOI: 10.13225/j.cnki.jccs.2017.1233 LI Fei,CHENG Jiulong,WEN Laifu,et al. Reason and correction of low resistivity problem in mine transient electro–magnetic method[J]. Journal of China Coal Society,2018,43(7):1959−1964. DOI: 10.13225/j.cnki.jccs.2017.1233
[84] 吴信民,张振坤,徐剑波. 瞬变电磁法理论的探测深度问题[J]. 地球物理学进展,2015,30(3):1333−1336. DOI: 10.6038/pg20150344 WU Xinmin,ZHANG Zhenkun,XU Jianbo. Theoretical depth of investigation of transient electromagnetic method[J]. Progress in Geophysics,2015,30(3):1333−1336. DOI: 10.6038/pg20150344
[85] 杨海燕, 岳建华. 矿井瞬变电磁法理论与技术研究[M]. 北京: 科学出版社, 2015. [86] 李貅, 薛国强. 瞬变电磁法拟地震偏移成像研究[M]. 北京: 科学出版社, 2013. [87] 王海军,刘再斌,雷晓荣,等. 煤矿巷道三维激光扫描关键技术及工程实践[J]. 煤田地质与勘探,2022,50(1):109−117. DOI: 10.12363/issn.1001-1986.21.10.0589 WANG Haijun,LIU Zaibin,LEI Xiaorong,et al. Key technologies and engineering practice of 3D laser scanning in coal mine roadways[J]. Coal Geology & Exploration,2022,50(1):109−117. DOI: 10.12363/issn.1001-1986.21.10.0589
[88] 程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285−2295. DOI: 10.13225/j.cnki.jccs.KJ19.0510 CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285−2295. DOI: 10.13225/j.cnki.jccs.KJ19.0510
[89] 陈晓红. 基于交叉梯度函数的重震同步联合反演方法研究[D]. 青岛: 中国石油大学(华东), 2013. CHEN Xiaohong. Gravity and seismic simultaneous joint inversion method based on the cross–gradient functions[D]. Qingdao: China University of Petroleum (East China), 2013.
[90] 朴英哲. 多重地球物理数据交叉梯度联合反演研究及应用[D]. 长春: 吉林大学, 2015. PU Yingzhe. Research on crossgradient joint inversion of multiple geophysical data and its application[D]. Changchun: Jilin University, 2015.
[91] 安林,韩保山,李鹏,等. 面向透明工作面的地质建模插值误差分析[J]. 煤田地质与勘探,2022,50(6):184−189. DOI: 10.12363/issn.1001-1986.21.07.0368 AN Lin,HAN Baoshan,LI Peng,et al. Research on interpolation error analysis of geological modeling of intelligent working face[J]. Coal Geology & Exploration,2022,50(6):184−189. DOI: 10.12363/issn.1001-1986.21.07.0368
[92] 孙东玲,孙海涛. 煤矿采动区地面井瓦斯抽采技术及其应用前景分析[J]. 煤炭科学技术,2014,42(6):49−52. DOI: 10.13199/j.cnki.cst.2014.06.010 SUN Dongling,SUN Haitao. Application prospect analysis on gas drainage technology of surface well in mining area[J]. Coal Science and Technology,2014,42(6):49−52. DOI: 10.13199/j.cnki.cst.2014.06.010
[93] 孙东玲,付军辉,孙海涛,等. 采动区瓦斯地面井破断防护研究及应用[J]. 煤炭科学技术,2018,46(6):17−23. DOI: 10.13199/j.cnki.cst.2018.06.003 SUN Dongling,FU Junhui,SUN Haitao,et al. Study and application of gas surface well broken protection in mining area[J]. Coal Science and Technology,2018,46(6):17−23. DOI: 10.13199/j.cnki.cst.2018.06.003
[94] 赵建国,赵江鹏,许超,等. 煤矿井下复合定向钻进技术研究与应用[J]. 煤田地质与勘探,2018,46(4):202−206. DOI: 10.3969/j.issn.1001-1986.2018.04.033 ZHAO Jianguo,ZHAO Jiangpeng,XU Chao,et al. Composite directional drilling technology in underground coal mine[J]. Coal Geology & Exploration,2018,46(4):202−206. DOI: 10.3969/j.issn.1001-1986.2018.04.033
[95] 石智军,董书宁,杨俊哲,等. 煤矿井下3 000 m顺煤层定向钻孔钻进关键技术[J]. 煤田地质与勘探,2019,47(6):1−7. SHI Zhijun,DONG Shuning,YANG Junzhe,et al. Key technology of drilling in–seam directional borehole of 3 000 m in underground coal mine[J]. Coal Geology & Exploration,2019,47(6):1−7.
[96] 徐书荣,刘飞,梁道富,等. 底板梳状钻孔在碎软煤层瓦斯治理中的应用[J]. 探矿工程(岩土钻掘工程),2019,46(7):45−50. XU Shurong,LIU Fei,LIANG Daofu,et al. Application of comb type directional drilling in broken–soft coal seam floor for gas control[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2019,46(7):45−50.
[97] 王建利,陈冬冬,贾秉义. 韩城矿区碎软煤层顶板梳状孔水力压裂瓦斯抽采工程实践[J]. 煤田地质与勘探,2018,46(4):17−21. DOI: 10.3969/j.issn.1001-1986.2018.04.003 WANG Jianli,CHEN Dongdong,JIA Bingyi. Practice of gas drainage by hydraulic fracturing of roof pectination boreholes in broken soft coal seam in Hancheng Mining Area[J]. Coal Geology & Exploration,2018,46(4):17−21. DOI: 10.3969/j.issn.1001-1986.2018.04.003
[98] 李泉新,石智军,田宏亮,等. 我国煤矿区钻探技术装备研究进展[J]. 煤田地质与勘探,2019,47(2):1−6. LI Quanxin,SHI Zhijun,TIAN Hongliang,et al. Progress in the research on drilling technology and equipment in coal mining areas of China[J]. Coal Geology & Exploration,2019,47(2):1−6.
[99] 廖姜男,姜楠,宋海涛,等. 基于嵌入式技术的全液压钻机参数监测软件设计[J]. 煤田地质与勘探,2019,47(2):13−19. LIAO Jiangnan,JIANG Nan,SONG Haitao,et al. Design of parameter monitoring software for full hydraulic drilling rig based on embedded technology[J]. Coal Geology & Exploration,2019,47(2):13−19.
[100] 翁寅生,邬迪,鲁飞飞,等. 煤矿井下钻机远程控制系统设计[J]. 煤田地质与勘探,2019,47(2):20−26. WENG Yinsheng,WU Di,LU Feifei,et al. Design of remote control system of drilling rig in coal mines[J]. Coal Geology & Exploration,2019,47(2):20−26.
[101] 董洪波,范强,李坤,等. ZDY4500LFK全自动钻机开发与应用[J]. 煤田地质与勘探,2022,50(1):66−71. DOI: 10.12363/issn.1001-1986.21.12.0855 DONG Hongbo,FAN Qiang,LI Kun,et al. Development and application of ZDY4500LFK full automatic drilling rig[J]. Coal Geology & Exploration,2022,50(1):66−71. DOI: 10.12363/issn.1001-1986.21.12.0855
[102] 陈航. ZYWL–4000SY双履带全自动钻机优化设计[J]. 煤矿机械,2019,40(1):106−108. CHEN Hang. Optimizing design of ZYWL−4000SY double–crawler fully–automatic drilling rig[J]. Coal Mine Machinery,2019,40(1):106−108.
[103] 方鹏,姚克,王龙鹏,等. ZDY25000LDK智能化定向钻进装备关键技术研究[J]. 煤田地质与勘探,2022,50(1):72−79. DOI: 10.12363/issn.1001-1986.21.10.0597 FANG Peng,YAO Ke,WANG Longpeng,et al. Research on key technologies of the ZDY25000LDK intelligent directional drilling equipment[J]. Coal Geology & Exploration,2022,50(1):72−79. DOI: 10.12363/issn.1001-1986.21.10.0597
[104] 张幼振,范涛,阚志涛,魏宏超,陈洪岩. 煤矿巷道掘进超前钻探技术应用与发展[J]. 煤田地质与勘探,2021,49(5):286−293. ZHANG Youzhen,FAN Tao,KAN Zhitao,WEI Hongchao,CHEN Hongyan. Application and development of advanced drilling technology for coal mine roadway heading[J]. COAL GEOLOGY & EXPLORATION,2021,49(5):286−293.
[105] 李江. 煤田高密度三维地震勘探数据采集高效资料整理方法[J]. 工程地球物理学报,2021,18(4):416−420. DOI: 10.3969/j.issn.1672-7940.2021.04.002 LI Jiang. High efficiency method for high density 3D seismic data acquisition in coal field[J]. Chinese Journal of Engineering Geophysics,2021,18(4):416−420. DOI: 10.3969/j.issn.1672-7940.2021.04.002
[106] 程建远,聂爱兰,张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探,2016,44(6):136−141. DOI: 10.3969/j.issn.1001-1986.2016.06.025 CHENG Jianyuan,NIE Ailan,ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration,2016,44(6):136−141. DOI: 10.3969/j.issn.1001-1986.2016.06.025
[107] 金学良,王琦. 煤矿采区高密度三维地震勘探模式与效果[J]. 煤田地质与勘探,2020,48(6):1−7. DOI: 10.3969/j.issn.1001-1986.2020.06.01 JIN Xueliang,WANG Qi. Pattern and effect of the high density 3D seismic exploration in coal mining districts[J]. Coal Geology & Exploration,2020,48(6):1−7. DOI: 10.3969/j.issn.1001-1986.2020.06.01
[108] 侯泽明,杨德义. 山西煤矿采区高密度三维地震勘探综述[J]. 煤田地质与勘探,2020,48(6):15−24. DOI: 10.3969/j.issn.1001-1986.2020.06.003 HOU Zeming,YANG Deyi. Summary of high density 3D seismic exploration in the mining districts of coal mines in Shanxi Province[J]. Coal Geology & Exploration,2020,48(6):15−24. DOI: 10.3969/j.issn.1001-1986.2020.06.003
[109] 程建远,覃思,陆斌,等. 煤矿井下随采地震探测技术发展综述[J]. 煤田地质与勘探,2019,47(3):1−9. DOI: 10.3969/j.issn.1001-1986.2019.03.001 CHENG Jianyuan,QIN Si,LU Bin,et al. The development of seismic−while−mining detection technology in underground coal mines[J]. Coal Geology & Exploration,2019,47(3):1−9. DOI: 10.3969/j.issn.1001-1986.2019.03.001
[110] 王保利,程建远,金丹,等. 煤矿井下随掘地震震源特征及探测性能研究[J]. 煤田地质与勘探,2022,50(1):10−19. DOI: 10.12363/issn.1001-1986.21.11.0639 WANG Baoli,CHENG Jianyuan,JIN Dan,et al. Characteristics and detection performance of the source of seismic while excavating in underground coal mines[J]. Coal Geology & Exploration,2022,50(1):10−19. DOI: 10.12363/issn.1001-1986.21.11.0639
[111] 张唤兰,王保利. 基于分段波形互相关的井下随采地震数据成像[J]. 煤田地质与勘探,2020,48(4):29−33. DOI: 10.3969/j.issn.1001-1986.2020.04.004 ZHANG Huanlan,WANG Baoli. Waveform cross correlation–based imaging of underground seismic data while mining[J]. Coal Geology & Exploration,2020,48(4):29−33. DOI: 10.3969/j.issn.1001-1986.2020.04.004
[112] XUE Guoqiang,BAI Chaoying,YAN Shu,et al. Deep sounding TEM investigation method based on a modified fixed central–loop system[J]. Journal of Applied Geophysics,2012,76:23−32. DOI: 10.1016/j.jappgeo.2011.10.007
[113] LI Hai,XUE Guoqiang,ZHAO Pan,et al. Inversion of arbitrary segmented loop source TEM data over a layered earth[J]. Journal of Applied Geophysics,2016,128:87−95. DOI: 10.1016/j.jappgeo.2016.03.017
[114] 覃庆炎,罗威,周洪生. 中心回线瞬变电磁自适应正则化反演[J]. 科学技术与工程,2014,14(13):7−10. DOI: 10.3969/j.issn.1671-1815.2014.13.002 QIN Qingyan,LUO Wei,ZHOU Hongsheng. Inversion display of ARIA used in in–loop transient electromagnetic sounding[J]. Science Technology and Engineering,2014,14(13):7−10. DOI: 10.3969/j.issn.1671-1815.2014.13.002
[115] CHEN Weiying,XUE Guoqiang,MUHAMMAD Y K,et al. Application of short–offset TEM (SOTEM) technique in mapping water–enriched zones of coal stratum,an example from East China[J]. Pure and Applied Geophysics,2015,172(6):1643−1651. DOI: 10.1007/s00024-014-1028-z
[116] ZHOU Nannan,XUE Guoqiang,HOU Dongyang,et al. Short−offset grounded−wire TEM method for efficient detection of mined−out areas in vegetation−covered mountainous coalfields[J]. Exploration Geophysics,2017,48(4):374−382. DOI: 10.1071/EG15095
[117] 陈卫营,李海,薛国强,等. SOTEM数据一维OCCAM反演及其应用于三维模型的效果[J]. 地球物理学报,2017,60(9):3667−3676. DOI: 10.6038/cjg20170930 CHEN Weiying,LI Hai,XUE Guoqiang,et al. 1D OCCAM inversion of SOTEM data and its application to 3D models[J]. Chinese Journal of Geophysics,2017,60(9):3667−3676. DOI: 10.6038/cjg20170930
[118] ZHOU Nannan,HOU Dongyang,XUE Guoqiang. Effects of shadow and source overprint on grounded–wire transient electromagnetic response[J]. IEEE Geoscience and Remote Sensing Letters,2018,15(8):1169−1173. DOI: 10.1109/LGRS.2018.2836152
[119] LI Hai,XUE Guoqiang,ZHOU Nannan,et al. Appraisal of an array TEM method in detecting a mined–out area beneath a conductive layer[J]. Pure and Applied Geophysics,2015,172(10):2917−2929. DOI: 10.1007/s00024-015-1075-0
[120] HOU Dongyang,XUE Guoqiang,ZHOU Nannan,et al. Exploration of deep magnetite deposit under thick and conductive overburden with ex component of SOTEM:A case study in China[J]. Pure and Applied Geophysics,2019,176(2):857−871. DOI: 10.1007/s00024-018-2005-8
[121] 薛国强,李海,陈卫营,等. 煤矿含水体瞬变电磁探测技术研究进展[J]. 煤炭学报,2021,46(1):77−85. DOI: 10.13225/j.cnki.jccs.YG20.1781 XUE Guoqiang,LI Hai,CHEN Weiying,et al. Progress of transient electromagnetic detection technology for water–bearing bodies in coal mines[J]. Journal of China Coal Society,2021,46(1):77−85. DOI: 10.13225/j.cnki.jccs.YG20.1781
[122] 程建远,王信文,张仲礼,等. 煤矿井下高分辨率地震探测技术[J]. 煤田地质与勘探,1997,25(5):14−16. CHENG Jianyuan,WANG Xinwen,ZHANG Zhongli,et al. The technique of high resolution seismic prospecting in the underworkings[J]. Coal Geology & Exploration,1997,25(5):14−16.
[123] 程建远,李淅龙,张广忠,等. 煤矿井下地震勘探技术应用现状与发展展望[J]. 勘探地球物理进展,2009,32(2):96−100. CHENG Jianyuan,LI Xilong,ZHANG Guangzhong,et al. Current status and outlook of seismic exploration applied underground in coal mine[J]. Progress in Exploration Geophysics,2009,32(2):96−100.
[124] 金丹,程建远,覃思,等. 煤矿井下地震勘探资料特殊处理方法及效果[J]. 煤田地质与勘探,2014,42(4):72−76. DOI: 10.3969/j.issn.1001-1986.2014.04.016 JIN Dan,CHENG Jianyuan,QIN Si,et al. Special processing method and effect analysis of seismic data in underground coal mines[J]. Coal Geology & Exploration,2014,42(4):72−76. DOI: 10.3969/j.issn.1001-1986.2014.04.016
[125] 苏晓云. 厚煤层内小断层的反射槽波探测技术及应用[J]. 煤田地质与勘探,2022,50(1):25−30. DOI: 10.12363/issn.1001-1986.21.11.0604 SU Xiaoyun. Application of reflected in–seam wave detection for small faults in thick coal seams[J]. Coal Geology & Exploration,2022,50(1):25−30. DOI: 10.12363/issn.1001-1986.21.11.0604
[126] GE Maochen. Source location error analysis and optimization methods[J]. Journal of Rock Mechanics and Geotechnical Engineering,2012,4(1):1−10. DOI: 10.3724/SP.J.1235.2012.00001
[127] 李楠,王恩元,GE Maochen,等. 微震震源定位可靠性综合评价模型[J]. 煤炭学报,2013,38(11):1940−1946. DOI: 10.13225/j.cnki.jccs.2013.11.002 LI Nan,WANG Enyuan,GE Maochen,et al. A comprehensive evaluation model for microseismic source location reliability[J]. Journal of China Coal Society,2013,38(11):1940−1946. DOI: 10.13225/j.cnki.jccs.2013.11.002
[128] 蔡武,窦林名,李振雷,等. 矿震震动波速度层析成像评估冲击危险的验证[J]. 地球物理学报,2016,59(1):252−262. DOI: 10.6038/cjg20160121 CAI Wu,DOU Linming,LI Zhenlei,et al. Verification of passive seismic velocity tomography in rock burst hazard assessment[J]. Chinese Journal of Geophysics,2016,59(1):252−262. DOI: 10.6038/cjg20160121
[129] 李绍红,朱建东,白兰英,等. 联合信息融合和解析方法的微震源定位研究[J]. 煤炭学报,2018,43(4):1065−1071. DOI: 10.13225/j.cnki.jccs.2017.0956 LI Shaohong,ZHU Jiandong,BAI Lanying,et al. Study on micro–seismic source location with information fusion and analytical methods[J]. Journal of China Coal Society,2018,43(4):1065−1071. DOI: 10.13225/j.cnki.jccs.2017.0956
[130] 吴荣新,刘盛东,张平松. 双巷并行三维电法探测煤层工作面底板富水区[J]. 煤炭学报,2010,35(3):454−457. DOI: 10.13225/j.cnki.jccs.2010.03.017 WU Rongxin,LIU Shengdong,ZHANG Pingsong. The exploration of two–gateways parallel 3−D electrical technology for water–rich area within coal face floor[J]. Journal of China Coal Society,2010,35(3):454−457. DOI: 10.13225/j.cnki.jccs.2010.03.017
[131] 张平松,刘盛东,舒玉峰. 煤层开采覆岩破坏发育规律动态测试分析[J]. 煤炭学报,2011,36(2):217−222. DOI: 10.13225/j.cnki.jccs.2011.02.010 ZHANG Pingsong,LIU Shengdong,SHU Yufeng. Analysis on dynamic testing results of distortion and collapsing of the top rock by geophysical method during mining of coal seam[J]. Journal of China Coal Society,2011,36(2):217−222. DOI: 10.13225/j.cnki.jccs.2011.02.010
[132] 姜春露,姜振泉,刘盛东,等. 多孔岩石化学注浆过程中视电阻率变化试验[J]. 中南大学学报(自然科学版),2013,44(10):4202−4207. JIANG Chunlu,JIANG Zhenquan,LIU Shengdong,et al. Experiment on apparent resistivity changes in porous rock chemical grouting process[J]. Journal of Central South University (Science and Technology),2013,44(10):4202−4207.
[133] 胡玉超. 矿井无线电波透视技术探测模式研究[J]. 物探与化探,2018,42(1):213−219. HU Yuchao. A study of detection mode of mine radio wave perspective technology[J]. Geophysical and Geochemical Exploration,2018,42(1):213−219.
[134] 刘百祥. 煤矿瓦斯富集区电磁波多频同步CT探测技术研究与应用[J]. 矿业安全与环保,2019,46(4):49−53. DOI: 10.3969/j.issn.1008-4495.2019.04.011 LIU Baixiang. Research and application of electromagnetic wave multi–frequency synchronous CT detection technology in gas enrichment area of coal mine[J]. Mining Safety & Environmental Protection,2019,46(4):49−53. DOI: 10.3969/j.issn.1008-4495.2019.04.011
[135] 贾茜,贾建称,张平卿,等. 高突矿井低抽巷穿层瓦斯抽采钻孔轨迹综合测控技术研究[J]. 中国煤炭地质,2019,31(9):30−36. DOI: 10.3969/j.issn.1674-1803.2019.09.05 JIA Qian,JIA Jiancheng,ZHANG Pingqing,et al. Study on comprehensive supervisory and control technology in high gas outburst hazard coalmine low drainage roadway crossing gas drainage borehole tracking[J]. Coal Geology of China,2019,31(9):30−36. DOI: 10.3969/j.issn.1674-1803.2019.09.05
[136] 桑向阳,贾建称,贾茜,等. 侧向电阻率视频成像测井技术在上向穿层瓦斯抽采孔中的应用研究:以平煤股份十三矿己15-17–11110工作面中间低抽巷穿层钻孔为例[J]. 中国煤炭地质,2021,33(10):148−154. SANG Xiangyang,JIA Jiancheng,JIA Qian,et al. Application study of lateral resistivity vision imaging well logging technology on upward crossing gas drainage boreholes:A case study of sixth15-17–11110 working face middle floor drainage road crossing borehole in Thirteenth Coalmine,Pingdingshan Coal Co. Ltd.[J]. Coal Geology of China,2021,33(10):148−154.
[137] 马丽,段中会,张建军,等. 基于精细勘查的煤矿地质保障信息系统[J]. 中国煤炭地质,2020,32(9):70−73. DOI: 10.3969/j.issn.1674-1803.2020.09.11 MA Li,DUAN Zhonghui,ZHANG Jianjun,et al. Coalmine geological security information system based on fine prospecting[J]. Coal Geology of China,2020,32(9):70−73. DOI: 10.3969/j.issn.1674-1803.2020.09.11
[138] 刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628−2635. DOI: 10.13225/j.cnki.jccs.dz20.0709 LIU Zaibin,LIU Cheng,LIU Wenming,et al. Multi–attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628−2635. DOI: 10.13225/j.cnki.jccs.dz20.0709
[139] 毛明仓,张孝斌,张玉良. 基于透明地质大数据智能精准开采技术研究[J]. 煤炭科学技术,2021,49(1):286−293. DOI: 10.13199/j.cnki.cst.2021.01.026 MAO Mingcang,ZHANG Xiaobin,ZHANG Yuliang. Research on intelligent and precision mining technology based on transparent geological big data[J]. Coal Science and Technology,2021,49(1):286−293. DOI: 10.13199/j.cnki.cst.2021.01.026
[140] 薛国华. 基于透明地质的综采工作面三维煤层建模[J]. 工矿自动化,2022,48(4):135−141. DOI: 10.13272/j.issn.1671-251x.2021090079 XUE Guohua. Three–dimensional coal seam modeling of fully mechanized working face based on transparent geology[J]. Journal of Mine Automation,2022,48(4):135−141. DOI: 10.13272/j.issn.1671-251x.2021090079
[141] 谷保泽,代振华,李明星,等. 透明地质保障技术构建方法:以乌海矿区为例[J]. 煤田地质与勘探,2022,50(1):136−143. DOI: 10.12363/issn.1001-1986.21.10.0601 GU Baoze,DAI Zhenhua,LI Mingxing,et al. Construction method on transparent geological guarantee technologies:A case study of Wuhai Mining Area[J]. Coal Geology & Exploration,2022,50(1):136−143. DOI: 10.12363/issn.1001-1986.21.10.0601
[142] 王双明, 范立民, 杨宏科. 榆神矿区保水采煤综合研究[R]. 西安: 陕西省煤田地质局, 2003. [143] 范立民,马雄德,冀瑞君. 西部生态脆弱矿区保水采煤研究与实践进展[J]. 煤炭学报,2015,40(8):1711−1717. DOI: 10.13225/j.cnki.jccs.2015.0223 FAN Limin,MA Xiongde,JI Ruijun. Progress in engineering practice of water–preserved coal mining in western eco–environment frangible area[J]. Journal of China Coal Society,2015,40(8):1711−1717. DOI: 10.13225/j.cnki.jccs.2015.0223
[144] 马凯,尹立明,陈军涛,等. 深部开采底板隔水关键层受局部高承压水作用破坏理论分析[J]. 岩土力学,2018,39(9):3213−3222. DOI: 10.16285/j.rsm.2017.1176 MA Kai,YIN Liming,CHEN Juntao,et al. Theoretical analysis on failure of water–resisting key strata in the floor by local high confined water in deep mining[J]. Rock and Soil Mechanics,2018,39(9):3213−3222. DOI: 10.16285/j.rsm.2017.1176
[145] 柳聪亮,谭志祥,李培现,等. 底板采动导水破坏带深度求取方法研究[J]. 煤矿开采,2010,15(5):38−41. DOI: 10.3969/j.issn.1006-6225.2010.05.014 LIU Congliang,TAN Zhixiang,LI Peixian,et al. Calculation methods for depth of floor water–conductive fissure zone induced by mining[J]. Coal Mining Technology,2010,15(5):38−41. DOI: 10.3969/j.issn.1006-6225.2010.05.014
[146] 王炳强,白喜庆,朱鲁. 底板下三带探测技术实例应用[J]. 煤炭与化工,2015,38(5):90−92. WANG Bingqiang,BAI Xiqing,ZHU Lu. Floor down three zone detection technology example application[J]. Coal and Chemical Industry,2015,38(5):90−92.
[147] 鞠金峰,李全生,许家林,等. 采动岩体裂隙自修复的水–CO2–岩相互作用试验研究[J]. 煤炭学报,2019,44(12):3700−3709. JU Jinfeng,LI Quansheng,XU Jialin,et al. Water–CO2–rock interaction experiments to reveal the self–healing effect of fractured mining damaged rock[J]. Journal of China Coal Society,2019,44(12):3700−3709.
[148] 许家林. 煤矿绿色开采20年研究及进展[J]. 煤炭科学技术,2020,48(9):1−15. DOI: 10.13199/j.cnki.cst.2020.09.001 XU Jialin. Research and progress of coal mine green mining in 20 years[J]. Coal Science and Technology,2020,48(9):1−15. DOI: 10.13199/j.cnki.cst.2020.09.001
[149] 方俊, 石智军, 李泉新, 等. 近距离煤层群开采邻近层卸压瓦斯定向钻孔阻截抽采方法: CN108301866B[P]. 2019-05-07. [150] QIN Wei,XU Jialin,HU Guozhong. Optimization of abandoned gob methane drainage through well placement selection[J]. Journal of Natural Gas Science and Engineering,2015,25:148−158. DOI: 10.1016/j.jngse.2015.05.004
[151] HUANG Peng,ZHANG Jixiong,YAN Xingjie,et al. Deformation response of roof in solid backfilling coal mining based on viscoelastic properties of waste gangue[J]. International Journal of Mining Science and Technology,2021,31(2):279−289. DOI: 10.1016/j.ijmst.2021.01.004
[152] LI Meng,ZHANG Jixiong,MENG Guohao,et al. Testing and modelling creep compression of waste rocks for backfill with different lithologies[J]. International Journal of Rock Mechanics and Mining Sciences,2020,125:104170. DOI: 10.1016/j.ijrmms.2019.104170
[153] 李石林,冯涛,朱卓慧. “煤体–支柱(架)–胶结体”联合作用下顶板超静定梁模型[J]. 煤炭学报,2013,38(10):1735−1741. LI Shilin,FENG Tao,ZHU Zhuohui. Mechanical model of statically indeterminate beam of roof under the combined action of coal body,pillar (support) and cemented fill[J]. Journal of China Coal Society,2013,38(10):1735−1741.
[154] 王磊,张鲜妮,郭广礼,等. 固体密实充填开采地表沉陷预计模型研究[J]. 岩土力学,2014,35(7):1973−1978. DOI: 10.16285/j.rsm.2014.07.022 WANG Lei,ZHANG Xianni,GUO Guangli,et al. Research on surface subsidence prediction model of coal mining with solid compacted backfilling[J]. Rock and Soil Mechanics,2014,35(7):1973−1978. DOI: 10.16285/j.rsm.2014.07.022
[155] 汪国胜,史心全,曹赵飞,等. 槽波地震与无线电波透视探测效果对比分析[J]. 煤炭与化工,2013,36(6):59−61. WANG Guosheng,SHI Xinquan,CAO Zhaofei,et al. Channel wave seismic and radio wave detection effect comparison analysis[J]. Coal and Chemical Industry,2013,36(6):59−61.
[156] 孙常长,孟凡彬. 煤层层滑构造地球物理特征及预测方法[J]. 中国煤炭地质,2021,33(3):53−59. DOI: 10.3969/j.issn.1674-1803.2021.03.11 SUN Changchang,MENG Fanbin. Geophysical features and prediction method of coal seam interlayer gliding tectonics[J]. Coal Geology of China,2021,33(3):53−59. DOI: 10.3969/j.issn.1674-1803.2021.03.11
[157] 袁亮,张平松. 煤炭精准开采透明地质条件的重构与思考[J]. 煤炭学报,2020,45(7):2346−2356. DOI: 10.13225/j.cnki.jccs.dz20.0856 YUAN Liang,ZHANG Pingsong. Framework and thinking of transparent geological conditions for precise mining of coal[J]. Journal of China Coal Society,2020,45(7):2346−2356. DOI: 10.13225/j.cnki.jccs.dz20.0856
[158] 刘再斌,董书宁,李鹏,等. 智能开采透明工作面技术架构与展望[J]. 智能矿山,2020,1(1):46−51. LIU Zaibin,DONG Shuning,LI Peng,et al. Technology architecture and prospects of transparent intelligent operating environment for coal mining[J]. Journal of Intelligent Mine,2020,1(1):46−51.
计量
- 文章访问数: 572
- HTML全文浏览量: 29
- PDF下载量: 199