煤矿巷道三维激光扫描关键技术及工程实践

王海军, 刘再斌, 雷晓荣, 韩保山, 陆自清

王海军,刘再斌,雷晓荣,等.煤矿巷道三维激光扫描关键技术及工程实践[J].煤田地质与勘探,2022,50(1):109−117. DOI: 10.12363/issn.1001-1986.21.10.0589
引用本文: 王海军,刘再斌,雷晓荣,等.煤矿巷道三维激光扫描关键技术及工程实践[J].煤田地质与勘探,2022,50(1):109−117. DOI: 10.12363/issn.1001-1986.21.10.0589
WANG Haijun,LIU Zaibin,LEI Xiaorong,et al.Key technologies and engineering practice of 3D laser scanning in coal mine roadways[J].Coal Geology & Exploration,2022,50(1):109−117. DOI: 10.12363/issn.1001-1986.21.10.0589
Citation: WANG Haijun,LIU Zaibin,LEI Xiaorong,et al.Key technologies and engineering practice of 3D laser scanning in coal mine roadways[J].Coal Geology & Exploration,2022,50(1):109−117. DOI: 10.12363/issn.1001-1986.21.10.0589

 

煤矿巷道三维激光扫描关键技术及工程实践

基金项目: 国家自然科学基金项目(41807190);天地科技股份有限公司科技创新创业资金专项项目(2019-TD-ZD003,2020-TD-ZD002)
详细信息
    作者简介:

    王海军,1975年生,男,山东安丘人,博士,正高级工程师,从事数字矿山和智慧矿山研究. E-mail:732443531@qq.com

    通讯作者:

    雷晓荣,1981年生,男,陕西佳县人,硕士,研究员,从事透明矿井技术开发与应用研究. E-mail:leixiaorong@cctegxian.com

  • 中图分类号: TP11

Key technologies and engineering practice of 3D laser scanning in coal mine roadways

  • 摘要: 智能化、无人化开采是煤炭行业发展的必然趋势,精准地质信息探测是当前智慧煤矿建设中的重点研发方向之一,其中巷道信息的精准探测和巷道三维模型的快速获取是地质透明化的重要数据来源。对比分析传统巷道建模方法及其优缺点,提出利用三维激光扫描重建技术构建高精度透明工作面巷道模型的技术思路。在分析煤矿井下工况环境长距离三维激光扫描面临的技术难题的基础上,研究三维激光扫描原理和空间点坐标计算方法,并提出透明工作面巷道三维激光扫描重建技术流程,其关键技术包括:三维激光扫描系统动态标定和坐标转换方法;点云预处理技术中基于统计滤波法的大尺度噪声滤波方法和基于移动最小二乘的小尺度噪声滤波算法;点云关键点提取与特征描述技术中SIFT特征检测算法和FPFH特征描述算法;点云配准技术中基于FPFH特征描述算法的粗配准技术和基于迭代最近点算法的精配准技术。以准格尔煤田唐家会煤矿某工作面为研究对象,利用自主研发的移动式三维激光扫描系统从三维激光扫描施工流程、巷道点云数据采集、边界轮廓线提取、巷道与工作面联合建模等方面进行实践应用。结果表明,提出的基于三维激光扫描技术的工作面巷道三维重建思路在技术上是可行的,能为复杂巷道的快速三维扫描、重建提供一条可行的技术路径。
    Abstract: Intelligent and unmanned mining is an inevitable trend in the development of the coal industry. Precise geological information detection is one of the current key research and development directions in the construction of smart coal mines. The precise detection of information on roadways and the rapid acquisition of three-dimensional roadway models are important data sources for geological transparence. Through a comparative analysis of traditional roadway modeling methods and their advantages and disadvantages, a technical idea of using three-dimensional laser scanning reconstruction technology to construct a high-precision transparent working face roadway model is proposed. On the basis of the analysis of the technical problems faced by long-distance 3D laser scanning in underground coal mine working conditions, the principle of 3D laser scanning and the calculation method of spatial point coordinates are studied, and the realization process of the 3D laser scanning reconstruction technology of the roadway in transparent working faces is proposed. The key technologies of the 3D laser scanning reconstruction technology including the dynamic calibration of the 3D laser scanning system and the coordinate conversion method, the large-scale noise filtering method based on the statistical filtering method in the point cloud preprocessing technology and the small-scale noise filtering algorithm based on moving least squares, the SIFT feature detection algorithm and FPFH feature description algorithm in the point cloud key point extraction and feature description technology as well as the coarse registration technology based on the FPFH feature description algorithm in the point cloud registration technology and precise registration technology based on the iterative nearest point algorithm. Finally, the self-developed mobile 3D laser scanning system is used for practical application in three-dimensional laser scanning construction process, roadway point cloud data collection, boundary contour extraction, and joint modeling of roadways and working faces in working faces of Tangjiahui Coal Mine in Jungar Coalfield. The results show that the idea of 3D reconstruction of roadways in working faces based on 3D laser scanning technology proposed in the paper is technically feasible, providing a feasible technical path for fast 3D scanning and reconstruction of complex roadways.
  • 图  1   空间点坐标计算

    Fig.  1   Calculation of the space point coordinate

    图  2   三维激光扫描技术流程

    Fig.  2   3D laser scanning technology process

    图  3   仪器坐标系

    Fig.  3   Coordinate system of the instrument

    图  4   施工前准备

    Fig.  4   Preparation before construction

    图  5   巷道点云成果

    Fig.  5   Results of roadway points cloud

    图  6   巷道点云轮廓

    Fig.  6   The contour of roadway points cloud

    图  7   巷道与工作面联合建模

    Fig.  7   Joint modeling of the roadway and working face

    图  8   巷道切片

    Fig.  8   Roadway slicing

    表  1   移动式三维激光扫描系统主要技术参数

    Table  1   Main technical parameters of mobile 3D laser scanning

    测量距离/m精度/m视场角/(°)分辨率/(°)
    300.03360×3600.6
    下载: 导出CSV

    表  2   纵向切割精度

    Table  2   Longitudinal cutting accuracy

    巷道高度测量值/m切片后测量值/m偏差/m
    3.40 3.408 0.008
    3.42 3.427 0.007
    3.41 3.426 0.016
    3.32 3.293 −0.027
    3.45 3.436 −0.090
    下载: 导出CSV

    表  3   整体偏差

    Table  3   Overall deviation

    巷道距离/m重叠度/%偏差/m
    0~5 41398.2530.251
    5 46397.8920.315
    5 51397.2170.442
    5 56396.6840.534
    5 62595.5870.675
    下载: 导出CSV
  • [1] 王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1−36.

    WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction(primary stage)[J]. Coal Science and Technology,2019,47(8):1−36.

    [2] 王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1−10.

    WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1−10.

    [3] 张进修.地下实测巷道模型三维重构及关键算法研究[D].湘潭: 湘潭大学, 2019.

    ZHANG Jinxiu.Research on 3D modeling and key algorithms for underground measured laneway[D].Xiangtan: Xiangtan University, 2019.

    [4] 江记洲,郭甲腾,吴立新,等. 基于三维激光扫描点云的矿山巷道三维建模方法研究[J]. 煤矿开采,2016,21(2):109−113.

    JIANG Jizhou,GUO Jiateng,WU Lixin,et al. 3-D modeling method of mine roadway based on 3-D laser scanning point cloud[J]. Coal Mining Technology,2016,21(2):109−113.

    [5] 石信肖,王健,王磊,等. 点云数据下的矿山巷道三维建模[J]. 遥感信息,2019,34(6):99−104. DOI: 10.3969/j.issn.1000-3177.2019.06.016

    SHI Xinxiao,WANG Jian,WANG Lei,et al. Three-dimensional modelling of mine laneways under point cloud data[J]. Remote Sensing Information,2019,34(6):99−104. DOI: 10.3969/j.issn.1000-3177.2019.06.016

    [6] 金卓,王占利,张自宾. 基于三维激光扫描的矿井开拓巷道围岩变形测量技术研究[J]. 应用激光,2020,40(6):1120−1125.

    JIN Zhuo,WANG Zhanli,ZHANG Zibin. Research on measurement technology of surrounding rock deformation of mine development roadway based on 3D Laser Scanning[J]. Applied Laser,2020,40(6):1120−1125.

    [7] 张君,胡哲骏,刘晓杨. 三维激光扫描设备在矿山井巷工程快速测绘中的应用[J]. 采矿技术,2020,20(6):229−232. DOI: 10.3969/j.issn.1671-2900.2020.06.063

    ZHANG Jun,HU Zhejun,LIU Xiaoyang. Application of 3D laser scanning equipment in rapid surveying and mapping of mine roadway engineering[J]. Mining Technology,2020,20(6):229−232. DOI: 10.3969/j.issn.1671-2900.2020.06.063

    [8] 郭良林,周大伟,张德民,等. 基于激光点云的巷道变形监测及支护研究[J]. 煤矿安全,2020,51(8):178−183.

    GUO Lianglin,ZHOU Dawei,ZHANG Demin,et al. Research on deformation monitoring and supporting of tunnel based on laser point cloud[J]. Safety in Coal Mines,2020,51(8):178−183.

    [9] 刘晓阳,胡乔森,李慧娟. 基于三维激光扫描技术的巷道顶板监测研究[J]. 中国煤炭,2017,43(7):81−83. DOI: 10.3969/j.issn.1006-530X.2017.07.021

    LIU Xiaoyang,HU Qiaosen,LI Huijuan. Research on coal mine roof monitoring based on three-dimensional laser scanning technology[J]. China Coal,2017,43(7):81−83. DOI: 10.3969/j.issn.1006-530X.2017.07.021

    [10] 赵小平,刘强. 基于点云数据的三维巷道快速建模研究[J]. 有色金属(矿山部分),2016,68(6):90−93.

    ZHAO Xiaoping,LIU Qiang. 3D rapid modeling for tunnel based on point cloud data[J]. Nonferrous Metals(Mining Section),2016,68(6):90−93.

    [11] 吴哲明,孙振国,张文增,等. 基于惯性测量单元旋转的陀螺漂移估计和补偿方法[J]. 清华大学学报(自然科学版),2014,54(9):1143−1147.

    WU Zheming,SUN Zhenguo,ZHANG Wenzeng,et al. Gyroscope bias estimation and compensation by rotation of the inertial measurement unit[J]. Journal of Tsinghua University(Science & Technology),2014,54(9):1143−1147.

    [12] 姚连璧,汪志飞,孙海丽. 车载激光扫描仪外参数标定方法设计与实现[J]. 同济大学学报(自然科学版),2016,44(1):161−166.

    YAO Lianbi,WANG Zhifei,SUN Haili. Design and implementation of vehicle laser scanner’s external parameter calibration[J]. Journal of Tongji University(Natural Science),2016,44(1):161−166.

    [13] 杨凡,李广云,王力. 三维坐标转换方法研究[J]. 测绘通报,2010(6):5−7.

    YANG Fan,LI Guangyun,WANG Li. Research on the methods of calculating 3D coordinate transform parameters[J]. Bulletin of Surveying and Mapping,2010(6):5−7.

    [14] 韩东升,徐茂林,金远航. 多源异构点云配准数据的滤波及精度分析[J]. 测绘科学技术学报,2020,37(5):503−508.

    HAN Dongsheng,XU Maolin,JIN Yuanhang. Filtering and accurace analysis of multi-source heterogeneous point cloud registration data[J]. Journal of Geomatics Science and Technology,2020,37(5):503−508.

    [15] 康传利,时满星,陈洋,等. 一种考虑多尺度噪声的平滑去噪方法[J]. 科学技术与工程,2018,18(11):110−116. DOI: 10.3969/j.issn.1671-1815.2018.11.017

    KANG Chuanli,SHI Manxing,CHEN Yang. A smoothing de-noising method considering multi-scale noise[J]. Science Technology and Engineering,2018,18(11):110−116. DOI: 10.3969/j.issn.1671-1815.2018.11.017

    [16]

    LOWE D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision,2004,60(2):91−110. DOI: 10.1023/B:VISI.0000029664.99615.94

    [17]

    RUSU R B, BLODOW N, MARTON Z C, et al.Aligning point cloud views using persistent feature histograms[C]//2008 IEEE//RSJ International Conference on Intelligent Robots and Systems, September 22-26, 2008, Nice, France.New York: IEEE Press, 2008: 3384−3391.

    [18]

    RUSU R B, BLODOW N, BEETZ M.Fast point feature histograms(FPFH) for 3D registration[C]//2009 IEEE International Conference on Robots and Automation, May 12-17, 2009, Kobe, Japan: IEEE Press, 2009: 3212−3217.

    [19] 荆路,武斌,方锡禄. 基于SIFT特征点结合ICP的点云配准方法[J]. 激光与红外,2021,51(7):944−950. DOI: 10.3969/j.issn.1001-5078.2021.07.019

    JING Lu,WU Bin,FANG Xilu. Point cloud registration method based on the SIFT feature points combined with ICP algorithm[J]. Laser & Infrared,2021,51(7):944−950. DOI: 10.3969/j.issn.1001-5078.2021.07.019

    [20]

    BESL P J ,MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239−256. DOI: 10.1109/34.121791

  • 期刊类型引用(22)

    1. 郭洋洋. 论一种实现煤矿地质测量信息透明化的方法. 内蒙古煤炭经济. 2025(03): 47-49 . 百度学术
    2. 何文斌. 煤矿巷道三维激光扫描测量精度研究. 内蒙古煤炭经济. 2025(04): 25-27 . 百度学术
    3. 陈晓伟,陈雷,李猛,胡成军,宋磊,袁鹏喆. 一种长巷道形变监测中轴线提取及断面构建方法. 工矿自动化. 2024(02): 35-41 . 百度学术
    4. 鞠哲. 综采工作面三维防爆巡检机器人设计及试验. 煤矿机械. 2024(04): 8-10 . 百度学术
    5. 王嘉伟,王海军,吴汉宁,吴艳,韩珂,程鑫,董敏涛. 基于三维地质建模技术的煤矿隐蔽致灾因素透明化研究. 工矿自动化. 2024(03): 71-81+121 . 百度学术
    6. 汪卫兵,侯学谦,赵栓峰,贺海涛,邢志中,路正雄. 基于残差优化的综采工作面煤壁点云补全方法. 工矿自动化. 2024(06): 120-128 . 百度学术
    7. 贾建龙,王志鹏,赵耀斌,刘飞,贾明超,高子龙,呼雨,陈利剑. 智能化矿用喷浆机器人研究及应用. 中国煤炭. 2024(07): 91-96 . 百度学术
    8. 薛旭升,杨星云,岳佳宁,王川伟,毛清华,马宏伟,王荣泉. 煤矿巷道空间毫米波雷达测量特性与重建方法. 煤田地质与勘探. 2024(10): 186-194 . 本站查看
    9. 林舒萍,宋晓,张铃. 基于三维激光扫描技术的智能制造生产线目标检测研究. 激光杂志. 2024(10): 227-231 . 百度学术
    10. 徐鑫乾,李海涛,吴雪,李成,王红星,王海楠. 基于云模型的激光点云数据快速计算算法. 自动化技术与应用. 2024(11): 107-110 . 百度学术
    11. 刘敬东,李旭,郑志强,苟丙荣,韩维新,巩泽文. 激光SALM技术在煤矿巷道形变监测与支护中的应用. 矿山机械. 2024(12): 52-57 . 百度学术
    12. 袁林山,崔周烽,许长辉,薛松超. 典型地下空间穿戴式三维激光扫描精度分析. 导航定位学报. 2024(06): 76-83 . 百度学术
    13. 贾建称,贾茜,桑向阳,吴艳. 我国煤矿地质保障系统建设30年:回顾与展望. 煤田地质与勘探. 2023(01): 86-106 . 本站查看
    14. 景宁波,马宪民,郭卫,秦学斌. 改进动态半径的矿井激光雷达点云滤波算法. 西安科技大学学报. 2023(02): 406-413 . 百度学术
    15. 常巧梅,杨静,阎跃观. 基于三维激光扫描技术的巷道变形测量方法. 煤炭技术. 2023(06): 30-32 . 百度学术
    16. 顾海荣,罗佳,高子渝,杨文娟,韩帅. 基于深度相机的大直径救援井三维模型重建研究. 煤田地质与勘探. 2023(05): 188-197 . 本站查看
    17. 戴文祥,陈雷,闫鹏飞,王利欣,李波,袁鹏喆. 基于三维激光扫描的煤矿巷道形变监测方法. 工矿自动化. 2023(10): 61-67+95 . 百度学术
    18. 董兴旺. 从智能化共性问题看柳林煤矿智能化未来发展方向. 山西煤炭. 2022(02): 95-99 . 百度学术
    19. 杨洪涛,于印,许吉禅,沈梅,陆广慧. 基于线扫描原理的煤矿巷道变形测量系统. 工矿自动化. 2022(07): 113-117+148 . 百度学术
    20. 李梅,康济童,刘晖,李兆阳,刘曦,朱青,肖彬虎. 基于BIM与GIS的矿山巷道参数化三维建模技术研究. 煤炭科学技术. 2022(07): 25-35 . 百度学术
    21. 亓玉浩,关士远. 基于激光SLAM的综采工作面实时三维建图方法. 工矿自动化. 2022(11): 139-144 . 百度学术
    22. 俞艳波,李小松,苏海华,李琦,卢进宏. 便携式三维激光扫描技术在矿山地下巷道可视化建模中的应用. 北京测绘. 2022(12): 1702-1707 . 百度学术

    其他类型引用(8)

图(8)  /  表(3)
计量
  • 文章访问数:  741
  • HTML全文浏览量:  28
  • PDF下载量:  142
  • 被引次数: 30
出版历程
  • 收稿日期:  2021-10-25
  • 修回日期:  2021-11-21
  • 录用日期:  2021-12-13
  • 网络出版日期:  2022-01-26
  • 发布日期:  2022-01-31

目录

    /

    返回文章
    返回