留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅埋煤层房柱式采空巷道地震物理模型设计及制作

王盼 朱书阶 贾茜 菅本启 张淼淼 董蕊静

王盼, 朱书阶, 贾茜, 菅本启, 张淼淼, 董蕊静. 浅埋煤层房柱式采空巷道地震物理模型设计及制作[J]. 煤田地质与勘探, 2021, 49(6): 101-106. doi: 10.3969/j.issn.1001-1986.2021.06.012
引用本文: 王盼, 朱书阶, 贾茜, 菅本启, 张淼淼, 董蕊静. 浅埋煤层房柱式采空巷道地震物理模型设计及制作[J]. 煤田地质与勘探, 2021, 49(6): 101-106. doi: 10.3969/j.issn.1001-1986.2021.06.012
WANG Pan, ZHU Shujie, JIA Qian, JIAN Benqi, ZHANG Miaomiao, DONG Ruijing. Design and construction of a seismic physical model of room-pillar goafs in shallow coal seams[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 101-106. doi: 10.3969/j.issn.1001-1986.2021.06.012
Citation: WANG Pan, ZHU Shujie, JIA Qian, JIAN Benqi, ZHANG Miaomiao, DONG Ruijing. Design and construction of a seismic physical model of room-pillar goafs in shallow coal seams[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 101-106. doi: 10.3969/j.issn.1001-1986.2021.06.012

浅埋煤层房柱式采空巷道地震物理模型设计及制作

doi: 10.3969/j.issn.1001-1986.2021.06.012
基金项目: 

国家自然科学基金项目 41974209

中煤科工集团西安研究院有限公司科技创新基金项目 2019XAYPT02

中煤科工集团西安研究院有限公司科技创新基金项目 2020XAYDC02-03

详细信息
    第一作者:

    王盼,1987年生,女,陕西咸阳人,博士研究生,从事物探仪器、地震物理模拟研究工作. E-mail:wangpan@cctegxian.com

  • 中图分类号: P315.8;P631

Design and construction of a seismic physical model of room-pillar goafs in shallow coal seams

  • 摘要: 针对陕北浅埋煤层房柱式采空区探测精度不高的问题,制作地震物理模型进行浅埋煤层房柱式采空区物理模拟研究。按照物理模拟几何尺寸和波阻抗相似比原则设计地震物理模型;进行大量相似材料配比试验,确定低速黄土层相似材料为环氧树脂和硅橡胶(1∶1.2),泥岩相似材料为环氧树脂、硅橡胶和滑石粉(1∶0.2∶0.6),煤层为环氧树脂和硅橡胶(1∶0.4),泥质砂岩相似材料为环氧树脂和滑石粉(1∶0.8),砂岩为环氧树脂和滑石粉(1∶1.2);采用数控雕刻机雕刻煤层采空区及巷道保证高精度,利用浇筑法和粘接法相结合制作采空区夹心层及煤层倒扣浇筑的方法解决采空区巷道内留存空气的模型制作工艺难题,完成了房柱式采空巷道地震物理模型制作。经测量,物理模型的单层形态测量精度为0.2 mm、速度相对误差小于5 %、密度绝对误差为±0.3 g/cm3,满足模型设计要求。

     

  • 图  采空巷道设计

    Fig. 1  Design of the mined-out roadways

    图  材料配比试块

    Fig. 2  Test blocks of different material ratios

    图  上下组煤层采空区部分制作

    Fig. 3  Construction of goafs in upper and lower coal groups

    图  底板砂岩层和下组煤

    Fig. 4  Sandstone layer and lower coal group

    图  模型实物

    Fig. 5  Physical figure of the model

    表  1  实际地层和物理模型参数对比

    Table  1  Parameters of the actual strata and the physical model

    地层 层厚/m 纵波速度/(m·s–1) 密度/(g·cm–3)
    实际 模型
    黄土层 60 0.060 1 250 1.30
    泥岩 42 0.042 2 400 2.20
    上组煤 9 0.009 1 900 1.40
    泥质砂岩 30 0.030 2 800 2.30
    下组煤 5 0.005 1 950 1.45
    砂岩 54 0.054 3 150 2.40
    下载: 导出CSV

    表  2  模型参数配比

    Table  2  Parameter ratio table of the model

    地层 材料 配比 纵波速度/(m·s–1) 密度/(g·cm–3) 转换密度/ (g·cm–3)
    黄土层 A∶B 1∶1.2 1 305 1.08 1.620
    泥岩 A∶B∶C 1∶0.2∶0.6 2 345 1.36 2.048
    上组煤 A∶B 1∶0.45 1 920 1.11 1.635
    泥质砂岩 A∶C 1∶0.8 2 816 1.54 2.313
    下组煤 A∶B 1∶0.4 1 987 1.12 1.665
    砂岩 A∶C 1∶1.2 3 000 1.66 2.496
    下载: 导出CSV
  • [1] 刘清洲. 浅埋近距离房柱式采空区之上综采围岩结构稳定性研究[D]. 西安: 西安科技大学, 2020.

    LIU Qingzhou. Research on structural stability of fully mechanized mining surrounding rock in shallow buried and close distance room and pillar goaf[D]. Xi'an: Xi'an University of Science and Technology, 2020.
    [2] 赵艳玲, 李素萃, 肖武. 我国采煤沉陷领域研究现状可视化分析与展望[J]. 煤炭科学技术, 2020, 48(1): 202–210. http://chinacaj.net/i,2,428219,0.html

    ZHAO Yanling, LI Sucui, XIAO Wu. Visualization analysis and prospect of the current research situation in the field of coal mining subsidence in China[J]. Coal Science and Technology, 2020, 48(1): 202–210. http://chinacaj.net/i,2,428219,0.html
    [3] 程建远, 孙洪星, 赵庆彪, 等. 老窑采空区的探测技术与实例研究[J]. 煤炭学报, 2008, 33(3): 251–255.. doi: 10.3321/j.issn:0253-9993.2008.03.003

    CHENG Jianyuan, SUN Hongxing, ZHAO Qingbiao, et al. The detection technology of excavated region in coal mine and case study[J]. Journal of China Coal Society, 2008, 33(3): 251–255.. doi: 10.3321/j.issn:0253-9993.2008.03.003
    [4] 覃思, 程建远, 胡继武, 等. 煤矿采空区及巷道的井地联合地震超前勘探[J]. 煤炭学报, 2015, 40(3): 636–639. https://www.zhangqiaokeyan.com/academic-journal-cn_journal-china-coal-society_thesis/0201216051714.html

    QIN Si, CHENG Jianyuan, HU Jiwu, et al. Coal-seam-ground-seismic for advance detection of goaf and roadway[J]. Journal of China Coal Society, 2015, 40(3): 636–639. https://www.zhangqiaokeyan.com/academic-journal-cn_journal-china-coal-society_thesis/0201216051714.html
    [5] 王磊. 房柱式采空区稳定性评价与数值模拟: 以陕北府谷县盛海煤矿为例[J]. 能源与节能, 2020(10): 2–6.. doi: 10.3969/j.issn.2095-0802.2020.10.002

    WANG Lei. Stability evaluation and numerical simulation of room and pillar goaf: A case study of Shenghai coal mine in Fugu County, Northern Shaanxi[J]. Energy and Energy Conservation, 2020(10): 2–6.. doi: 10.3969/j.issn.2095-0802.2020.10.002
    [6] 薛国强, 潘冬明, 于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展, 2018, 33(5): 2187–2192. http://www.cnki.com.cn/Article/CJFDTotal-DQWJ201805056.htm

    XUE Guoqiang, PAN Dongming, YU Jingcun. Review the applications of geophysical methods for mapping coal-mine voids[J]. Progress in Geophysics, 2018, 33(5): 2187–2192. http://www.cnki.com.cn/Article/CJFDTotal-DQWJ201805056.htm
    [7] 张昭. 不同年限采空区下地震勘探效果实例研究[J/OL]. 煤田地质与勘探. https://kns.cnki.net/kcms/detail/61.1155.P.20210715.1032.002.html

    ZHANG Zhao. Case study on seismic exploration effect under goaf with different years[J/OL]. Coal Geology & Exploration. https://kns.cnki.net/kcms/detail/61.1155.P.20210715.1032.002.html
    [8] WU Mansheng, DI Bangrang, WEI Jianxin, et al. Large-scale complex physical modeling and precision analysis[J]. Applied Geophysics, 2014, 11(2), 245–251.. doi: 10.1007/s11770-014-0434-4
    [9] 张福宏, 黄平, 黄开伟, 等. 复杂裂缝地球物理模型制作及地震采集处理研究[J]. 物探与化探, 2018, 42(1): 87–95. http://www.cnki.com.cn/Article/CJFDTotal-WTYH201801011.htm

    ZHANG Fuhong, HUANG Ping, HUANG Kaiwei, et al. The construction of complex fracture geophysical model and the gathering and processing of seismic data[J]. Geophysical and Geochemical Exploration, 2018, 42(1): 87–95. http://www.cnki.com.cn/Article/CJFDTotal-WTYH201801011.htm
    [10] 赵鸿儒, 唐文榜, 郭铁栓. 超声地震模型试验技术及应用[M]. 北京: 石油工业出版社, 1986.

    ZHAO Hongru, TANG Wenbang, GUO Tieshuan. Technology and application of ultrasonic seismic modeling[M]. Beijing: Petroleum Industry Press, 1986.
    [11] DI Bangrang, XU Xiucang, WEI Jianxin. A seismic modeling analysis of wide and narrow 3D observation systems for channel sand bodies[J]. Applied Geophysics, 2008, 5(3): 294–300. http://www.onacademic.com/detail/journal_1000034540087810_4851.html
    [12] 魏建新, 狄帮让. 地震物理模型中三维地质模型材料特性研究[J]. 石油物探, 2006, 45(6): 586–590.. doi: 10.3969/j.issn.1000-1441.2006.06.006

    WEI Jianxin, DI Bangrang. Properties of materials forming the 3D geological model in seismic physical model[J]. Geophysical Prospecting for Petroleum, 2006, 45(6): 586–590.. doi: 10.3969/j.issn.1000-1441.2006.06.006
    [13] 李智宏, 朱海龙, 赵群, 等. 地震物理模型材料研制与应用研究[J]. 地球物理学进展, 2009, 24(2): 408–417.. doi: 10.3969/j.issn.1004-2903.2009.02.006

    LI Zhihong, ZHU Hailong, ZHAO Qun, et al. Study and materialization of new seismic physical model building materials[J]. Progress in Geophysics, 2009, 24(2): 408–417.. doi: 10.3969/j.issn.1004-2903.2009.02.006
    [14] 裴宇翀, 杨勤勇, 赵群, 等. 硅微粉改性新型三维地震物理模型材料特性研究[J]. 地球物理学进展, 2016, 31(1): 455–460. https://d.wanfangdata.com.cn/periodical/dqwlxjz201601054

    PEI Yuchong, YANG Qinyong, ZHAO Qun, et al. Research on silica micro-powders modified 3D seismic physical model materials[J]. Progress in Geophysics, 2016, 31(1): 455–460. https://d.wanfangdata.com.cn/periodical/dqwlxjz201601054
    [15] 董金玉, 杨继红, 杨国香, 等. 基于正交设计的模型试验相似材料的配比试验研究[J]. 煤炭学报, 2012, 37(1): 44–49. http://www.cnki.com.cn/Article/CJFDTotal-MTXB201201009.htm

    DONG Jinyu, YANG Jihong, YANG Guoxiang, et al. Research on similar material proportioning test of model test based on orthogonal design[J]. Journal of China Coal Society, 2012, 37(1): 44–49. http://www.cnki.com.cn/Article/CJFDTotal-MTXB201201009.htm
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  17
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 修回日期:  2021-10-27
  • 发布日期:  2021-12-25
  • 网络出版日期:  2021-12-30

目录

    /

    返回文章
    返回