留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高矿化度矿井水深部转移存储介质条件及影响机制

李鑫 孙亚军 陈歌 王厚柱 张志军

李鑫, 孙亚军, 陈歌, 王厚柱, 张志军. 高矿化度矿井水深部转移存储介质条件及影响机制[J]. 煤田地质与勘探, 2021, 49(5): 17-28. doi: 10.3969/j.issn.1001-1986.2021.05.002
引用本文: 李鑫, 孙亚军, 陈歌, 王厚柱, 张志军. 高矿化度矿井水深部转移存储介质条件及影响机制[J]. 煤田地质与勘探, 2021, 49(5): 17-28. doi: 10.3969/j.issn.1001-1986.2021.05.002
LI Xin, SUN Yajun, CHEN Ge, WANG Houzhu, ZHANG Zhijun. Medium conditons and influence mechanism of high salinity mine water transfer and storage by deep well recharge[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 17-28. doi: 10.3969/j.issn.1001-1986.2021.05.002
Citation: LI Xin, SUN Yajun, CHEN Ge, WANG Houzhu, ZHANG Zhijun. Medium conditons and influence mechanism of high salinity mine water transfer and storage by deep well recharge[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 17-28. doi: 10.3969/j.issn.1001-1986.2021.05.002

高矿化度矿井水深部转移存储介质条件及影响机制

doi: 10.3969/j.issn.1001-1986.2021.05.002
基金项目: 

国家重点研发计划项目 2019YFC1805400

中央高校基本科研业务费专项资金项目 2020ZDPY0201

详细信息
    第一作者:

    李鑫,1997年生,男,河南周口人,博士研究生,研究方向为地下水科学与工程. E-mail: lixin2020@cumt.edu.cn

    通信作者:

    孙亚军,1963年生,男,安徽涡阳人,博士,教授,博士生导师,研究方向为矿井水害防治与污染防控. E-mail: syj@cumt.edu.cn

  • 中图分类号: TD74; TD82

Medium conditons and influence mechanism of high salinity mine water transfer and storage by deep well recharge

  • 摘要: 我国西部干旱-半干旱矿区既面临水资源匮乏,又面临矿井涌水量大、矿井水矿化度高等难题。为减少采煤过程中水资源浪费、保护西部地区水生态环境,基于保水采煤和煤-水双资源协调开采等理论基础与技术方法,围绕“矿井水深部转移存储”这一核心科学理念,提出将处理后的矿井水进行高压深井转移存储,转移至煤层底板深部含水层中存储。在鄂尔多斯盆地东部某矿实施试验井工程,通过开展野外岩样采集、室内电镜扫描、岩石成分分析、压汞等实验与定量-定性方法,研究目的转移存储层的水文地质条件和特征,分析不同高压水力压裂增渗试验主控因素,对比矿井水水质、转移存储层原生地层水水质和转移存储后混合水质,获取了矿井水高压持续深井转移存储的水文地质效应。结果表明:目前试验井单井累计转移存储矿井水量已满足设计预期,且持续高压水力压裂增渗方式可不断改善和渐次增强目的存储层的矿井水存储能力,延长服役时效。因此,高矿化度矿井水深部转移存储在技术和经济上具有可行性,将对西部地区水资源保护、水生态环境可持续发展产生重要意义;同时,相比高矿化度矿井水处理成本,能够有效缓解矿井水处理经济负担,为西部煤矿区矿井水转移存储提供典型示范。

     

  • 图  区域地层剖面及柱状图

    Fig. 1  Regional stratigraphic profile and histogram

    图  刘家沟组交错层理和垂直裂隙发育情况

    Fig. 2  Development of cross bedings and vertical fractures of Liujiagou Formation

    图  宝塔山砂岩岩样横断面

    Fig. 3  Cross section of Baotashan sandstone samples

    图  刘家沟组岩样横断面

    Fig. 4  Cross section of Liujiagou Formation samples

    图  宝塔山砂岩微裂隙和层间裂隙

    Fig. 5  Microfissures and interbedded fissures in Baotashan sandstone

    图  刘家沟组砂岩粒间孔隙和裂隙

    Fig. 6  Intergranular voids and fractures of Liujiagou Formation sandstone

    图  岩样矿物成分柱状图

    Fig. 7  Mineral composition accumulation map of rock samples

    图  黏土矿物成分柱状图

    Fig. 8  Mineral composition accumulation map of clay

    图  转移存储工程试验布置

    Fig. 9  v

    图  10  矿井水注水流量和注水压力的变化趋势

    Fig. 10  Variation trend of mine water flow and reinjection pressure

    表  1  3-1煤层顶板含(隔)水层情况概要

    Table  1  Summary of aquifers and aquicludes for 3-1 coal seam roof in the study area

    含(隔)水层 岩性 厚度/m最小~最大值/平均值 水动力条件及富水性 水化学特征
    第四系含水层 中沙、细沙、粉沙为主 27.0~159.0/109.5 垂向以大气降水为主,地下水流速2.58~3.70 m/d,富水性中等,透水性良好,渗透系数约为0.398 m/d,与侏罗系浅部含水层有水力联系 水化学类型为HCO3-Ca-Na及HCO3-Na-Ca,TDS约为265 mg/L
    志丹群含水层 中砂岩、细砂岩、粉砂岩夹泥岩、砂质泥岩、粉砂质泥岩 117.4~292.1/198.0 富水性中等,地下水流速约为0.922 m/h,渗透系数为0.139~ 0.207 m/d,与第四系含水层有水力联系 水化学类型为HCO3-Ca-Na及HCO3-Na,pH值为7.7~9.3,TDS为326.00~436.81 mg/L
    安定组隔水层 砂质泥岩夹粉、细粒砂岩 60.8~260.5/116.0 整体隔水,局部砂体厚度大,具有一定的富水性 水化学类型为HCO3-Ca,TDS约为330 mg/L,pH值9.3
    直罗组中上部隔水层 泥岩夹砂质泥岩、粉砂岩互层 73.2~228.8/138.0 隔水性能好,能有效阻隔上下含水层间的水力联系。
    直罗组底含水层 砂岩夹泥岩、泥质砂岩、粉砂岩 24.1~160.3/77.3 受“两带”高度影响,与煤层顶板砂岩含水层水力联系密切,可视为同一含水层。单位矿井涌水量q为0.056~ 0.16 L/(s-m),渗透系数为0.056 7~ 0.239 1 m/d 水温17~20℃,TDS为566~ 1 660 mg/L,pH值8.2~9.3,F-1质量浓度1.05~4.30 mg/L,水化学类型为SO4-Ca-Na及SO4-Na
    延安组含水层 砂岩为主,含煤地层 含水段0~44 m 当前开采煤层顶底板砂岩富水性相对较强,其余煤层间中细砂岩含量相对较低,富水性较弱 可将延安组含水层再细分为若干含水层,且水化学性质差异明显
    下载: 导出CSV

    表  2  煤层底板含水层对比分析

    Table  2  Contrastive analysis of aquifers from coal seam floor

    含(隔)水层 岩性 均厚/m 水文地质条件
    延安组含(隔)水层 上段隔水层为砂泥岩互层,底部为宝塔山粗砂岩(含水层) 含水层段厚65 m 宝塔山砂岩为灰白、灰色粗砂岩和含砾粗砂岩,主要成分为石英、长石,泥质胶结及高岭土质胶结;局部含砾,地下水矿化度大于16 g/L,水化学类型为Cl-Ca型,为苦咸水,水质较差。孔隙率14.3%,主要孔径范围66 nm~8.483 μm
    延长组含(隔)水层 砂泥岩互层 595
    二马营组隔水层 中砂岩、泥岩互层 158
    和尚沟组隔水层 泥岩 91
    刘家沟组含水层 细砂岩、粗砂岩 416 灰白色、浅肉红色中细砂岩、粗砂岩与灰绿泥岩等厚互层;粗粒砂岩水平发育厚度不一,存在非均质性,砂岩以石英为主,长石次之,颗粒呈次圆状,泥质胶结,硬、脆、易碎。泥岩质纯,色不均,性较硬,断口平直;泥质粉砂岩质不纯,泥质含量较高,粉砂岩分布不均,断口粗糙。刘家沟组是以裂隙水和孔隙水为主的砂岩含水层,属于裂隙-孔隙双重含水介质,含水系统人工可塑造性较好,地下水补给条件差,水量贫乏,人工改造后的储水和导水性能良好;且刘家沟组与上覆含水层之间有良好的隔水层;孔隙率5%~7.4%,有效孔径范围6.3~12.1 μm
    石千峰组含水层 细、中砂岩互层 35 钻孔仅揭露顶部一定深度
    下载: 导出CSV

    表  3  压水试验数据

    Table  3  Statistical table of mine water reinjection tests

    压水试验 持续时间/h 水压/ MPa 压水量/ (m3·h-1) 累计压水量/m3 吸水指数/ (m3·h-1·MPa-1)
    1 31.0 8.5 98.0 3 038 11.52
    2 25.0 8.0~8.5 51.0 1 284 6.18
    3 24.5 6.2 68.2 1 665 11.00~13.64
    5 74.5 6.3 53.8 4 008 8.54
    6 72.5 6.7 71.8 5 205 10.72
    7 75.5 6.8 103.3 7 747 15.20
    注:第4次试验时停止压水,观测压力衰减情况。
    下载: 导出CSV

    表  4  矿井水水质处理前后对比分析

    Table  4  Mine water quality analysis before and after treatment

    处理前 处理后
    项目 测试值 控制值 备注 项目 测试值 控制值 备注 项目 测试值
    氨氮/(mg·L-1) 1.38 0.2 超标 pH值 7.35~7.87 6.50~8.50 pH值 8.05
    硫化物/(mg·L-1) 0.005L 0.2 铅/(mg·L-1) 1.0×10-3 0.05 SS/(mg·L-1) 38.7
    氰化物/(mg·L-1) 0.004L 0.05 砷/(mg·L-1) 2.6×10-3 0.05 COD/(mg·L-1) 9.7
    总铬/(mg·L-1) 0.1 锌/(mg·L-1) 0.08~0.15 1.0 氟化物/(mg·L-1) 0.766
    六价铬/(mg·L-1) 0.004L 0.05 铁/(mg·L-1) 0.29~0.63 0.3 超标 石油类/(mg·L-1) 0.06L
    氟化物/(mg·L-1) 0.342 1.0 铜/(mg·L-1) 0.05 1.0 总汞/(μg·L-1) 0.04L
    阴离子活性剂/(mg·L-1) 0.05L 0.3 锰/(mg·L-1) 0.39 0.1 超标 总砷/(μg·L-1) 0.3L
    悬浮物/(mg·L-1) 84 汞/(mg·L-1) 8.3×10-3 0.001 总铬/(mg·L-1) 0.03L
    化学需氧量/(mg·L-1) 25~118 15 超标 SO42- 1 080 总锰/(mg·L-1) 0.06
    五日化学需氧量/(mg·L-1) 2.8 4 Cl-/(mg·L-1) 75.5 总锌/(mg·L-1) 0.02
    石油类/(mg·L-1) 0.08 0.05 超标 NO3- 0.73 总镉/(μg·L-1) 0.025L
    细菌总个数/(个·mL-1) 90 Ca2+/(mg·L-1) 130 总铅/(μg·L-1) 0.25L
    总硬度/(mg·L-1) 414.7 450 超标 Mg2+/(mg·L-1) 14 总铁/(mg·L-1) 0.01
    总碱度(以CaCO3计, mg/L) 250 TDS/(mg·L-1) 2 036.7 六价铬/(mg·L-1) 0.006
    浊度(NTU) 1.06 总α放射性/(Bq·L-1) 0.102
    总β放射性/(Bq·L-1) 0.155
    注:数据后边的L表示低于检出限。
    下载: 导出CSV

    表  5  刘家沟组水质情况[48]

    Table  5  Water quality of Liujiagou Formation[48]

    项目 质量浓度/(mg·L-1) 项目 质量浓度/(mg·L-1) 项目 质量浓度/(mg·L-1)
    K+ 34.15 TDS 65 111.14 124.1
    Na+ 7 816 可溶SiO2 1.18 0.031 9
    Ca2+ 14 511.02 游离CO2 10.66 0
    Mg2+ 894.06 MH4+ 0 0.008 7
    Fe2+ 1.4 1.909 3.52
    Fe3+ 0.84 1 144 0.074 3
    HCO3- 25.22 0.039 7 0.010 6
    CO32- 0 0.029 2 0.001 1
    Cl- 39 739.84 0.109 6 0.184 5
    SO42- 2 075.01 0.291 5 0.035 2
    F- 1.88 0.014 3 硼酸盐 0.478 7
    NO2- 0.002 0.000 6 硫化物 14.84
    NO3- 10 0.000 2
    下载: 导出CSV
  • [1] 隋旺华, 梁艳坤, 张改玲, 等. 采掘中突水溃砂机理研究现状及展望[J]. 煤炭科学技术, 2011, 39(11): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201111001.htm

    SUI Wanghua, LIANG Yankun, ZHANG Gailing, et al. Study status and outlook of risk evaluation on water inrush and sand inrush mechanism of excavation and mining[J]. Coal Science and Technology, 2011, 39(11): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201111001.htm
    [2] 王运所, 许化政, 王传刚, 等. 鄂尔多斯盆地上古生界地层水分布与矿化度特征[J]. 石油学报, 2010, 31(5): 748-753. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201005010.htm

    WANG Yunsuo, XU Huazheng, WANG Chuangang, et al. Characteristics of the salinity and distribution of the Neopaleozoic formation water in Ordos Basin[J]. Acta Petrolei Sinica, 2010, 31(5): 748-753. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201005010.htm
    [3] 孙亚军, 张梦飞, 高尚, 等. 典型高强度开采矿区保水采煤关键技术与实践[J]. 煤炭学报, 2017, 42(1): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701008.htm

    SUN Yajun, ZHANG Mengfei, GAO Shang, et al. Water-preserved mining technology and practice in typical high intensity mining area of China[J]. Journal of China Coal Society, 2017, 42(1): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701008.htm
    [4] 亓星, 许强, 李斌, 等. 甘肃黑方台黄土滑坡地表水入渗机制初步研究[J]. 工程地质学报, 2016, 24(3): 418-424. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201603012.htm

    QI Xing, XU Qiang, LI Bin, et al. Preliminary study on mechanism of surface water infiltration at Heifangtai loess landslides in Gansu[J]. Journal of Engineering Geology, 2016, 24(3): 418-424. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201603012.htm
    [5] 周廷定. 顺和煤矿副井井壁腐蚀破坏机理与防治措施研究[D]. 北京: 中国矿业大学(北京), 2015.

    ZHOU Tingding. Research mechanism and control measures on corrosion and deterioration of auxiliary shaft lining in Shunhe Coal Mine[D]. Beijing: China University of Mining and Technology(Beijing), 2015.
    [6] 田江漫. 河南永煤矿区选煤厂设备防腐蚀研究[D]. 北京: 中国矿业大学(北京), 2014.

    TIAN Jiangman. Study on anti-corrosion of washery equipment in Henan Yongcheng mining area[D]. Beijing: China University of Mining and Technology(Beijing), 2014.
    [7] 范立民, 马雄德, 蒋泽泉, 等. 保水采煤研究30年回顾与展望[J]. 煤炭科学技术, 2019, 47(7): 1-30. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201907001.htm

    FAN Limin, MA Xiongde, JIANG Zequan, et al. Review and thirty years prospect of research on water-preserved coal mining[J]. Coal Science and Technology, 2019, 47(7): 1-30. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201907001.htm
    [8] 顾大钊, 张勇, 曹志国. 我国煤炭开采水资源保护利用技术研究进展[J]. 煤炭科学技术, 2016, 44(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601001.htm

    GU Dazhao, ZHANG Yong, CAO Zhiguo. Technical progress of water resource protection and utilization by coal mining in China[J]. Coal Science and Technology, 2016, 44(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601001.htm
    [9] 顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报, 2015, 40(2): 239-246. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502001.htm

    GU Dazhao. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society, 2015, 40(2): 239-246. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502001.htm
    [10] 郑琳, 孙亚军, 刘德元, 等. 水资源转移存储在浅埋深薄基岩矿区的应用[J]. 河南理工大学学报(自然科学版), 2010, 29(1): 92-96.. doi: 10.3969/j.issn.1673-9787.2010.01.019

    ZHENG Lin, SUN Yajun, LIU Deyuan, et al. Application research on transfer and storage technology for water resources in diggings of shallow overburden and thin bedrock in mine area[J]. Journal of Henan Polytechnic University(Natural Science), 2010, 29(1): 92-96.. doi: 10.3969/j.issn.1673-9787.2010.01.019
    [11] 武强, 申建军, 王洋. "煤-水"双资源型矿井开采技术方法与工程应用[J]. 煤炭学报, 2017, 42(1): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701002.htm

    WU Qiang, SHEN Jianjun, WANG Yang. Mining techniques and engineering application for "Coal-Water" dual-resources mine[J]. Journal of China Coal Society, 2017, 42(1): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701002.htm
    [12] 孙亚军, 陈歌, 徐智敏, 等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报, 2020, 45(1): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001031.htm

    SUN Yajun, CHEN Ge, XU Zhimin, et al. Research progress of water environment, treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society, 2020, 45(1): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001031.htm
    [13] 丁金余. 新河矿泉水的研究与开发利用[J]. 煤炭科技, 2007(2): 36-37. https://www.cnki.com.cn/Article/CJFDTOTAL-META200702020.htm

    DING Jinyu. The research, exploitation and utilization of mineral water in Xinhe mine[J]. Coal Science & Technology Magazine, 2007(2): 36-37. https://www.cnki.com.cn/Article/CJFDTOTAL-META200702020.htm
    [14] 刘勇, 孙亚军. 煤矿矿井水资源化技术探讨[J]. 能源技术与管理, 2008(1): 73-75.. doi: 10.3969/j.issn.1672-9943-B.2008.01.029

    LIU Yong, SUN Yajun. The discussion of resourceful technology in mine water[J]. Energy Technology and Management, 2008(1): 73-75.. doi: 10.3969/j.issn.1672-9943-B.2008.01.029
    [15] 冯斌, 郭彩香, 黄青霄. 霍州辛置桃沟矿泉水的形成条件及水质特征[J]. 华北地质矿产杂志, 1994, 9(4): 456-460. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDZ404.027.htm

    FENG Bin, GUO Caixiang, HUANG Qingxiao. Generating condition and quality characteristics of Taogou natural mineral water of Xinzhi, Huozhou City[J]. Journal Geology and Mineral Resources North China, 1994, 9(4): 456-460. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDZ404.027.htm
    [16] 贾玉州, 李南骏. 矿井水处理及其资源化利用[J]. 技术与市场, 2018, 25(10): 125-126.. doi: 10.3969/j.issn.1006-8554.2018.10.057

    JIA Yuzhou, LI Nanjun. Treatment and resourceful utilization of mine water[J]. Technology and Market, 2018, 25(10): 125-126.. doi: 10.3969/j.issn.1006-8554.2018.10.057
    [17] 黄国军, 董守华, 李东会. 矿井水处理方法与综合利用[J]. 矿业快报, 2007(4): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200704015.htm

    HUANG Guojun, DONG Shouhua, LI Donghui. Treating methods and comprehensive utilization technique of coal mine water[J]. Express Information of Mining Industry, 2007(4): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200704015.htm
    [18] 袁航, 石辉. 矿井水资源利用的研究进展与展望[J]. 水资源与水工程学报, 2008, 19(5): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ200805013.htm

    YUAN Hang, SHI Hui. Research progress and prospect of coal mine water resource utilization[J]. Journal of Water Resources and Water Engineering, 2008, 19(5): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ200805013.htm
    [19] 李秋博, 罗绍河. 焦作矿区矿井水处理及其利用[J]. 能源环境保护, 2007, 21(4): 50-52.. doi: 10.3969/j.issn.1006-8759.2007.04.017

    LI Qiubo, LUO Shaohe. Disposal and utilization of mine water in Jiaozuo mine area[J]. Energy Environmental Protection, 2007, 21(4): 50-52.. doi: 10.3969/j.issn.1006-8759.2007.04.017
    [20] 钟鸣远, 裘鑫林. 新集二矿矿井水资源化利用[J]. 能源环境保护, 2003, 17(1): 59-60.. doi: 10.3969/j.issn.1006-8759.2003.01.021

    ZHONG Mingyuan, QIU Xinlin. Utilization of water resources in Xinji No. 2 mine[J]. Energy Environmental Protection, 2003, 17(1): 59-60.. doi: 10.3969/j.issn.1006-8759.2003.01.021
    [21] 郭常颖, 李多松, 江洁. 煤矿高矿化度矿井水处理方法探讨[J]. 煤炭工程, 2006, 38(1): 12-13. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ200601004.htm

    GUO Changying, LI Duosong, JIANG Jie. Discussion on treatment method of mine high mineralized water[J]. Coal Engineering, 2006, 38(1): 12-13. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ200601004.htm
    [22] 王保国, 吕宏凌, 杨毅. 膜分离技术在石油化工领域的应用进展[J]. 石油化工, 2006, 35(8): 705-710.. doi: 10.3321/j.issn:1000-8144.2006.08.001

    WANG Baoguo, LYU Hongling, YANG Yi. Application of membrane separation technology in petrochemical industry[J]. Petrochemical Technology, 2006, 35(8): 705-710.. doi: 10.3321/j.issn:1000-8144.2006.08.001
    [23] 毛维东. 矿井水反渗透处理膜污染的判断与预防[J]. 煤炭工程, 2013, 45(8): 98-100. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201308036.htm

    MAO Weidong. Judgement and prevention of membrane pollution in reverse osmosis treatment of mine drainage[J]. Coal Engineering, 2013, 45(8): 98-100. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201308036.htm
    [24] TOLONEN E T, SARPOLA A, HU Tao, et al. Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals[J]. Chemosphere, 2014, 117: 419-424.. doi: 10.1016/j.chemosphere.2014.07.090
    [25] ANAWAR H M. Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge[J]. Journal of Environmental Management, 2015, 158: 111-121. http://europepmc.org/abstract/MED/25979297
    [26] USTER B, TRUMM D, POPE J, et al. Waste mussel shells to treat acid mine drainage: A New Zealand initiative[J]. Reclamation Matters, 2014: 23-27. http://www.researchgate.net/profile/Benjamin_Uster/publication/267751783_Waste_Mussel_Shells_to_Treat_Acid_Mine_Drainage_A_New_Zealand_Initiative/links/545a7ed60cf2c46f66438179.pdf
    [27] STROSNIDER W H, NAIRN R W. Effective passive treatment of high-strength acid mine drainage and raw municipal wastewater in Potosí, Bolivia using simple mutual incubations and limestone[J]. Journal of Geochemical Exploration, 2010, 105(1/2): 34-42. http://www.sciencedirect.com/science/article/pii/S0375674210000385
    [28] 王璇, 曹晓强, 李琳, 等. 低成本吸附剂处理酸性矿井水研究进展[J]. 金属矿山, 2018(7): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201807002.htm

    WANG Xuan, CAO Xiaoqiang, LI Lin, et al. Research progress of treatment of acid mine drainage by low-cost adsorbents[J]. Metal Mine, 2018(7): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201807002.htm
    [29] 桂和荣, 姚恩亲, 宋晓梅, 等. 矿井水资源化技术研究[M]. 徐州: 中国矿业大学出版社, 2011.

    GUI Herong, YAO Enqin, SONG Xiaomei, et al. Research on recycling technology of coalmine water[J]. Xuzhou: China University of Mining and Technology Press, 2011.
    [30] 张学真. 地下水人工补给研究现状与前瞻[J]. 煤田地质与勘探, 2006, 34(4): 41-44.. doi: 10.3969/j.issn.1001-1986.2006.04.012

    ZHANG Xuezhen. Research situation and prospect of artificial supplement to groundwater[J]. Coal Geology & Exploration, 2006, 34(4): 41-44.. doi: 10.3969/j.issn.1001-1986.2006.04.012
    [31] JOHN V H, RICHARD L O. A comparative SEM study on the micromorphology of glacial and nonglacial clasts with varying age and lithology[J]. Canadian Journal of Earth Sciences, 2004, 41(9): 1123-1139.. doi: 10.1139/e04-056
    [32] 王美娜, 李继红, 郭召杰, 等. 注水开发对胜坨油田坨30断块沙二段储层性质的影响[J]. 北京大学学报(自然科学版), 2004, 40(6): 855-863.. doi: 10.3321/j.issn:0479-8023.2004.06.002

    WANG Meina, LI Jihong, GUO Zhaojie, et al. The influence of water-flooding development on reservoir properties of the NO12 member of Shahejie Formation of Tuo30 fault block in Shengtuo oilfield[J]. Journal of Peking University(Natural Science), 2004, 40(6): 855-863.. doi: 10.3321/j.issn:0479-8023.2004.06.002
    [33] MURIEL A, ALAIN B, ANNE M B, et al. A microstructural study of a "crack-seal" type serpentine vein using SEM and TEM techniques[J]. European Journal of Mineralogy, 2004, 16(4): 585-595.. doi: 10.1127/0935-1221/2004/0016-0585
    [34] 王宗霞, 曾路, 王小波, 等. 硅藻土在扫描电镜下的微观形貌[J]. 电子显微学报, 2006, 25(增刊1): 345-346. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV2006S1191.htm

    WANG Zongxia, ZENG Lu, WANG Xiaobo, et al. Micromorphology of diatomite under scanning electron microscope[J]. Journal of Electronic Microscopy, 2006, 25(Sup. 1): 345-346. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV2006S1191.htm
    [35] KLAVER J, DESBOIS G, JANOS L, et al. BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany[J]. International Journal of Coal Geology, 2012, 103: 12-25.. doi: 10.1016/j.coal.2012.06.012
    [36] CELIK K, JACKSON M D, MANCIO M, et al. High-volume natural volcanic Pozzolan and limestone powder as partial replacements for Portland cement in self-compacting and sustainable concrete[J]. Cement and Concrete Composites, 2014, 45(1): 136-147. http://www.sciencedirect.com/science/article/pii/S0958946513001315
    [37] GUO Boyun, GHALAMBOR A, DUAN Shengkai. Correlation between sandstone permeability and capillary pressure curves[J]. Journal of Petroleum Science and Engineering, 2004, 43: 239-246.. doi: 10.1016/j.petrol.2004.02.016
    [38] 王瑞飞, 陈明强, 孙卫. 鄂尔多斯盆地延长组超低渗透砂岩储层微观孔隙结构特征研究[J]. 地质论评, 2008, 54(2): 270-277.. doi: 10.3321/j.issn:0371-5736.2008.02.015

    WANG Ruifei, CHEN Mingqiang, SUN Wei. The research of micro-pore structure in super-low permeability sandstone reservoir of the Yanchang Formation in Ordos Basin[J]. Geological Review, 2008, 54(2): 270-277.. doi: 10.3321/j.issn:0371-5736.2008.02.015
    [39] 杨峰, 宁正福, 孔德涛, 等. 高压压汞法和氮气吸附法分析页岩孔隙结构[J]. 天然气地球科学, 2013, 24(3): 450-455. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201303002.htm

    YANG Feng, NING Zhengfu, KONG Detao, et al. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience, 2013, 24(3): 450-455. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201303002.htm
    [40] SCHMITT M, FERNANDES C P, JOSE A B, et al. Characterization of pore systems in seal rocks using Nitrogen Gas Adsorption combined with Mercury Injection Capillary Pressure techniques[J]. Marine and Petroleum Geology, 2013, 39(1): 138-149.. doi: 10.1016/j.marpetgeo.2012.09.001
    [41] HASAN A N, HOSSAIN M E, HASAN A, et al. Comparison of permeability models using mercury injection capillary pressure data on carbonate rock samples[J]. Journal of Petroleum Science and Engineering, 2014, 121: 9-22.. doi: 10.1016/j.petrol.2014.06.032
    [42] 吴乾荣. 粘土矿物的X射线衍射物相分析[J]. 岩矿测试, 1994, 13(1): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS401.003.htm

    WU Qianrong. Phase analysis of clay minerals by X-ray diffraction[J]. Rock and Mineral Analysis, 1994, 13(1): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS401.003.htm
    [43] 冯涛, 吴光, 张夏临. X射线衍射分析技术在花岗岩物相分析上的应用[J]. 铁道建筑, 2008(4): 97-100.. doi: 10.3969/j.issn.1003-1995.2008.04.033

    FENG Tao, WU Guang, ZHANG Xialin. Application of X-ray diffraction analysis technology in granite phase analysis[J]. Railway Engineering, 2008(4): 97-100.. doi: 10.3969/j.issn.1003-1995.2008.04.033
    [44] 刘钦. 哈密矿区侏罗系弱胶结砂岩结构及渗流模型研究[D]. 徐州: 中国矿业大学, 2018.

    LIU Qin. Study on the structure and seepage model of Jurassic weak cemented sandstone in Hami mining area[D]. Xuzhou: China University of Mining and Technology, 2018.
    [45] 陈歌. 鄂尔多斯盆地东缘矿井水深部转移存储机理研究[D]. 徐州: 中国矿业大学, 2020.

    CHEN Ge. Study on the deep transfer and storage mechanism of mine water in the eastern margin of Ordos Basin[D]. Xuzhou: China University of Mining and Technology, 2020.
    [46] 朱丽莉, 方艳君, 吴梅, 等. 喇萨杏油田开发过程中吸水指数变化规律[J]. 大庆石油地质与开发, 2017, 36(1): 70-74.. doi: 10.3969/J.ISSN.1000-3754.2017.01.012

    ZHU Lili, FANG Yanjun, WU Mei, et al. Changed laws of the water injectivity coefficient in the development course of Lasaxing oilfields[J]. Petroleum Geology and Oilfield Development in Daqing, 2017, 36(1): 70-74.. doi: 10.3969/J.ISSN.1000-3754.2017.01.012
    [47] 王陶, 朱卫红, 杨胜来, 等. 用相对渗透率曲线建立水平井采液、吸水指数经验公式[J]. 新疆石油地质, 2009, 30(2): 235-237. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200902032.htm

    WANG Tao, ZHU Weihong, YANG Shenglai, et al. Application of relative permeability curves to establishment of empirical formulas for fluid productivity index and injectivity index of horizontal well[J]. Xinjiang Petroleum Geology, 2009, 30(2): 235-237. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200902032.htm
    [48] 刁玉杰. 神华CCS示范工程场地储层表征与CO2运移规律研究[D]. 北京: 中国矿业大学(北京), 2017.

    DIAO Yujie. Study on the reservoir characterization and CO2 migration underground in the Shenhua CCS demonstration project site[D]. Beijing: China University of Mining & Technology(Beijing), 2017.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  27
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-19
  • 修回日期:  2021-07-14
  • 发布日期:  2021-10-25
  • 网络出版日期:  2021-11-06

目录

    /

    返回文章
    返回