留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于水文地球化学的合山煤田地下热水特征分析

赵冠华

赵冠华. 基于水文地球化学的合山煤田地下热水特征分析[J]. 煤田地质与勘探, 2021, 49(4): 250-259. doi: 10.3969/j.issn.1001-1986.2021.04.030
引用本文: 赵冠华. 基于水文地球化学的合山煤田地下热水特征分析[J]. 煤田地质与勘探, 2021, 49(4): 250-259. doi: 10.3969/j.issn.1001-1986.2021.04.030
ZHAO Guanhua. Characteristics analysis of the geothermal water in Heshan Coalfield based on hydrogeochemistry[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 250-259. doi: 10.3969/j.issn.1001-1986.2021.04.030
Citation: ZHAO Guanhua. Characteristics analysis of the geothermal water in Heshan Coalfield based on hydrogeochemistry[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 250-259. doi: 10.3969/j.issn.1001-1986.2021.04.030

基于水文地球化学的合山煤田地下热水特征分析

doi: 10.3969/j.issn.1001-1986.2021.04.030
基金项目: 

中国煤炭地质总局广西煤炭地质局2019年重点科研项目 201902

详细信息
    第一作者:

    赵冠华,1969年生,男,广西天等人,高级工程师,从事地质矿产资源勘查技术管理和科研工作. E-mail:543340326@qq.com

  • 中图分类号: TD712

Characteristics analysis of the geothermal water in Heshan Coalfield based on hydrogeochemistry

  • 摘要: 为开发广西合山煤田地下热水资源,以水文地球化学方法为主,通过石英温标法估算地热储层温度,并推测地下热水循环深度,研究地下热水赋存规律。结果显示,合山煤田地下热水补给、径流和排泄受岩溶构造控制,以顺地层为主,穿层次之;接受大气降水入渗补给,水质为HCO3-Ca·Mg型;采用无蒸汽损失的石英温标法,估算热储层温度约80℃,识别出浅层地下水、浅层地下水与深部地下循环混合水和深部地下循环水3种类型;以井田内No.6钻孔数据为例,800 m孔深以下为深层地下循环水,其热储层温度为63.44~79.41℃,循环深度在2 541~2 704 m,与实际地层埋深相差较小,估算结果可信度较高;在1 400 m以浅,有望探寻到水温约50℃热水;合山煤田地下热水的偏硅酸、温度均达到医疗要求;三、四煤层热导率低,孔隙率小,为热储层良好盖层;四煤层底板合山组下段和茅口组溶隙发育,为良好热水储层。研究成果对煤田地热资源的开发利用前景预测有一定的探索意义。

     

  • 图  合山煤田地层与水文地质及储盖层模式

    Fig. 1  Formation hydrogeology and reservoir cap rock model of Heshan Coalfield

    图  合山煤田区域地质与水文地质剖面图

    Fig. 2  Conceptual map of regional geology and hydrogeology section in Heshan Coalfield

    表  1  合山煤田部分钻孔可溶性SiO2参数

    Table  1  Parameters of soluble SiO2 in some boreholes in Heshan Coalfield

    取样孔 层位 取样深度/m 可溶性SiO2质量
    浓度/(mg·L –1)
    pH
    No.1 P2 h 1 361.66~367.62 5.5 7.90
    No.2 P2h1 128.00~171.00 2.5 7.20
    No.3 P2h1 40.79~86.39 10 8.00
    No.4 P2m2 473.50~486.00 10 7.50
    No.5 P2h1 & P1m2 733.05~820.08 12 7.30
    No.6 P2h1 887.35~889.75 20 7.40
    No.6 P2h1 & P2m2 914.65~920.25 30 8.04
    No.7 P2h1 24.00~85.85 15 7.45
    No.8 P2h1 351.60~359.20 2.5 7.30
    No.9 P2m2 353.20~429.20 12 7.50
    No.10 P2h1 & P1m2 109.00~112.00 10 7.69
    No.11 P2m40.50~413.90 9 7.46
    No.12 P2h1 165.30~200.90 2 7.40
    No.13 P2h1 130.00~149.30 6.5 7.45
    下载: 导出CSV

    表  2  合山煤田石英地热温标法估算热储层温度

    Table  2  Estimation of reservoir temperature by quartz geotherm scale method in Heshan Coalfield

    取样孔 热储层估算温度/℃ 取样温度/℃ 取样孔 热储层估算温度/℃ 取样
    温度/℃
    No.1 21.03 27.0 No.7 52.97 24
    No.2 0.01 22.5 No.8 0.01 25
    No.3 39.26 23.0 No.9 45.28 25
    No.4 39.26 25.5 No.10 39.26 22
    No.5 45.28 29.0 No.11 35.89 25
    No.6 63.44 41.0 No.12 –5.40 23
    No.6 79.41 41.0 No.13 25.91 25.5
    下载: 导出CSV

    表  3  合山煤田No.6孔实测地温资料

    Table  3  Ground temperature data of No.6 drillhole in Heshan Coalfield

    序号 孔深/m 温度/℃ 序号 孔深/m 温度/℃
    1 0 27.8 11 500 27.3
    2 50 23.6 12 550 27.6
    3 100 23.8 13 600 27.9
    4 150 24.1 14 650 28.4
    5 200 24.4 15 700 28.9
    6 250 24.5 16 750 29.5
    7 300 25.0 17 800 30.1
    8 350 25.2 18 850 33.0
    9 400 26.7 19 900 37.0
    10 450 26.9 20 944 41.0
    下载: 导出CSV

    表  4  合山煤田No.6孔热储循环深度估算

    Table  4  Estimation of thermal storage cycle depth of No.6 borehole in Heshan Coalfield

    估算深度/m 无蒸汽损失的石英温标法估算温度/℃ 热水循环深度/m
    889.75 63.44 2 541
    920.00 79.41 2 704
    下载: 导出CSV
  • [1] 广西合山矿务局, 辽宁省煤炭研究所. 广西合山里兰矿地热特征[J]. 煤田地质与勘探, 1978, 6(1): 29-34. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=9cd571f5-a46a-48fa-b4cd-d78abb552007

    Guangxi Heshan Mining Bureau, Liaoning Coal Research Institute. Geothermal characteristics of the Lilan mine in Heshan Guangxi[J]. Coal Geology & Exploration, 1978, 6(1): 29-34. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=9cd571f5-a46a-48fa-b4cd-d78abb552007
    [2] 广西煤炭地质一五〇勘探队. 广西壮族自治区合山市、来宾县合山煤田平阳区专门水文地质勘探报告[R]. 南宁: 广西煤炭地质一五〇勘探队, 1989.

    No. 150 Exploration Team of Guangxi Coal Geology. Special hydrogeological exploration report of Pingyang Coalfield in Heshan City and Laibin County, Guangxi Zhuang Autonomous Region[R]. Nanning: No. 150 Exploration Team of Guangxi Coal Geology, 1989.
    [3] 唐健生, 关碧珠, 吴少斌, 等. 南宁新生代沉积盆地型地热资源前景研究[M]. 桂林: 广西师范大学出版社, 2005.

    TANG Jiansheng, GUAN Bizhu, WU Shaobin, et al. A study on the prospect of Cenozoic sedimentary basin geothermal resources in Nanning[M]. Guilin: Guangxi Normal University Press, 2005.
    [4] 张毅, 郭东明. 中国深部煤矿地热资源评价及利用分析[M]. 北京: 冶金工业出版社, 2012.

    ZHANG Yi, GUO Dongming. Evaluation and utilization of geothermal resources in deep coal mines in China[M]. Beijing: Metallurgical Industry Press, 2012.
    [5] 毕世科. 唐口煤矿深部地热资源利用研究[D]. 徐州: 中国矿业大学, 2018.

    BI Shike. Utilization of the deep geothermal resource in Tangkou coal mine[D]. Xuzhou: China University of Mining and Technology, 2018.
    [6] 张福强, 赵冠华, 廖家隆, 等. 广西合山煤田隐伏地热找矿前景分析[J]. 中国煤炭地质, 2019, 31(11): 43-49.. doi: 10.3969/j.issn.1674-1803.2019.11.10

    ZHANG Fuqiang, ZHAO Guanhua, LIAO Jialong, et al. Prospect analysis of concealed geothermal prospecting in Heshan coalfield, Guangxi[J]. Coal Geology of China, 2019, 31(11): 43-49.. doi: 10.3969/j.issn.1674-1803.2019.11.10
    [7] 李波. 合山平阳勘探区地下水与地温关系探讨[J]. 煤田地质与勘探, 1991, 19(4): 45-47. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=cb18c368-79ed-4f67-982f-f31ec7ad9478

    LI Bo. Discussion on the relationship between groundwater and ground temperature in Heshan City Pingyang exploration area[J]. Coal Geology & Exploration, 1991, 19(4): 45-47. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=cb18c368-79ed-4f67-982f-f31ec7ad9478
    [8] 黄伟斌, 潘树仁, 丁致中. 苏南地区地下热水的化学特征[J]. 江苏煤炭, 2001(2): 8-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT200102004.htm

    HUANG Weibin, PAN Shuren, DING Zhizhong. Chemical characteristics of underground hot water in southern Jiangsu Province[J]. Jiangsu Coal Journal, 2001(2): 8-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT200102004.htm
    [9] 吴红梅, 孙占学. 地热系统中矿物-流体化学平衡的计算[J]. 华东地质学院学报, 2000, 23(1): 39-42.. doi: 10.3969/j.issn.1674-3504.2000.01.009

    WU Hongmei, SUN Zhanxue. Calculation of the fluid-rock equilibrium state in the geothermal system[J]. Journal of East China Geological Institute, 2000, 23(1): 39-42.. doi: 10.3969/j.issn.1674-3504.2000.01.009
    [10] 郎旭娟, 蔺文静, 刘志明, 等. 贵德盆地地下热水水文地球化学特征[J]. 地球科学, 2016, 41(10): 1723-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201610008.htm

    LANG Xujuan, LIN Wenjing, LIU Zhiming, et al. Hydrochemical characteristics of geothermal water in Guide Basin[J]. Earth Science, 2016, 41(10): 1723-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201610008.htm
    [11] 汪集暘. 地热学及其应用[M]. 北京: 科学出版社, 2015.

    WANG Jiyang. Geothermics and its applications[M]. Beijing: Science Press, 2015.
    [12] 董家国. 试论合山煤田深部岩溶发育特征[J]. 煤田地质与勘探, 1988, 15(3): 48-51. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=19ee7059-8674-4109-ae27-93ddc850d6a0

    DONG Jiaguo. On the development characteristics of deep karst in Heshan coalfield[J]. Coal Geology & Exploration, 1988, 15(3): 48-51. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=19ee7059-8674-4109-ae27-93ddc850d6a0
    [13] 刘毓初. 合山煤田的岩溶[J]. 煤田地质与勘探, 1987, 14(2): 47-51. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=c195de6d-cfcf-49bd-a46b-fabb5d32c8ef

    LIU Yuchu. Karst in Heshan coalfield[J]. Coal Geology & Exploration, 1987, 14(2): 47-51. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=c195de6d-cfcf-49bd-a46b-fabb5d32c8ef
    [14] 董家国. 广西合山煤田发现火成岩[J]. 煤田地质与勘探, 1973, 1(2): 66-70. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=b3f60f84-dbf5-455e-99d5-42377a8e2adf

    DONG Jiaguo. Discovery of igneous rocks in Heshan coalfield, Guangxi[J]. Coal Geology & Exploration, 1973, 1(2): 66-70. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=b3f60f84-dbf5-455e-99d5-42377a8e2adf
    [15] 王皓, 柴蕊. 地热温标在地热系统中的应用研究[J]. 河北工程大学学报(自然科学版), 2009, 26(3): 54-58.. doi: 10.3969/j.issn.1673-9469.2009.03.014

    WANG Hao, CHAI Rui. Application of geothermometers in the geothermal system[J]. Journal of Hebei University of Engineering(Natural Science Edition), 2009, 26(3): 54-58.. doi: 10.3969/j.issn.1673-9469.2009.03.014
    [16] 王广才. 平顶山矿区地下热水深部温度估算-地球化学温标的应用[J]. 煤田地质与勘探, 1996, 24(5): 40-42. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=cd8c17f6-e0e0-4a5a-a53e-b0c8d192632c

    WANG Guangcai. The temperature estimation of deep geothermal water in Pingdingshan coalfield[J]. Coal Geology & Exploration, 1996, 24(5): 40-42. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=cd8c17f6-e0e0-4a5a-a53e-b0c8d192632c
    [17] 杨昌永, 郝春生, 李瑾, 等. 寺家庄井田地温负异常及其主控因素[J]. 煤田地质与勘探, 2018, 46(6): 74-80. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=0cabd636-9a52-4d70-8c1c-9198c15d51c6

    YANG Changyong, HAO Chunsheng, LI Jin, et al. Negative geothermal anomaly and its main geological controlling factors in Sijiazhuang minefield[J]. Coal Geology & Exploration, 2018, 46(6): 74-80. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=0cabd636-9a52-4d70-8c1c-9198c15d51c6
    [18] 徐胜平, 彭涛, 吴基文, 等. 两淮煤田煤系岩石热导率特征及其对地温场的影响[J]. 煤田地质与勘探, 2014, 42(6): 76-81. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=db8550b7-b522-4254-829c-12d8a9eb58ef

    XU Shengping, PENG Tao, WU Jiwen, et al. The characteristics of rock thermal conductivity of coal measure strata and their influence on geothermal field in Huainan-Huaibei coalfield[J]. Coal Geology & Exploration, 2014, 42(6): 76-81. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=db8550b7-b522-4254-829c-12d8a9eb58ef
    [19] 国家标准化管理委员会, 国家质量监督检验检疫总局. 天然矿泉水资源地质勘探规范: GB/T 13727—2016[S]. 北京: 中国标准出版社, 2016.

    National Standardization Management Committee, General Administration of Quality Supervision, Inspection and Quarantine. Code for geological exploration of natural mineral water resources: GB/T 13727—2016[S]. Beijing: Standards Press of China, 2016.
    [20] 邵龙义, 鲁静, JONES T, 等. 桂中晚二叠世碳酸盐岩型煤系高有机硫煤的矿物学和地球化学研究[J]. 煤炭学报, 2006, 31(6): 770-775.. doi: 10.3321/j.issn:0253-9993.2006.06.016

    SHAO Longyi, LU Jing, JONES T, et al. Mineralogy and geochemistry of the high-organic sulphur coals from the carbonate coal measures of the Late Permian in central Guangxi[J]. Journal of China Coal Society, 2006, 31(6): 770-775.. doi: 10.3321/j.issn:0253-9993.2006.06.016
    [21] 谢志忠. 合山煤田4号煤地球化学特征[D]. 邯郸: 河北工程大学, 2019.

    XIE Zhizhong. Geochemical characteristics of the No. 4 coal in Heshan coalfield[D]. Handan: Hebei University of Engineering, 2019.
    [22] 朱光有, 张水昌, 梁英波. 中国海相碳酸盐岩气藏硫化氢形成的控制因素和分布预测[J]. 科学通报, 2007, 52(增刊1): 115-125. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2007S1014.htm

    ZHU Guangyou, ZHANG Shuichang, LIANG Yingbo. Controlling factors and distribution prediction of hydrogen sulfide formation in marine carbonate gas reservoirs in China[J]. Chinese Science Bulletin, 2007, 52(Sup. 1): 115-125. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2007S1014.htm
    [23] 贺训云, 姚根顺, 贺晓苏, 等. 桂中坳陷桂中1井沥青成因及油气成藏模式[J]. 石油学报, 2010, 31(3): 420-425. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201003011.htm

    HE Xunyun, YAO Genshun, HE Xiaosu, et al. Bitumen genesis and hydrocarbon accumulation pattern of well Guizhong-1 in Guizhong depression[J]. Acta Petrolei Sinica, 2010, 31(3): 420-425. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201003011.htm
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  25
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-02
  • 修回日期:  2021-05-20
  • 发布日期:  2021-08-25
  • 网络出版日期:  2021-09-10

目录

    /

    返回文章
    返回