留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄土抗剪强度与耐崩解性能综合改良试验研究

祝艳波 李红飞 巨之通 兰恒星 刘振谦 韩宇涛

祝艳波, 李红飞, 巨之通, 兰恒星, 刘振谦, 韩宇涛. 黄土抗剪强度与耐崩解性能综合改良试验研究[J]. 煤田地质与勘探, 2021, 49(4): 221-233. doi: 10.3969/j.issn.1001-1986.2021.04.027
引用本文: 祝艳波, 李红飞, 巨之通, 兰恒星, 刘振谦, 韩宇涛. 黄土抗剪强度与耐崩解性能综合改良试验研究[J]. 煤田地质与勘探, 2021, 49(4): 221-233. doi: 10.3969/j.issn.1001-1986.2021.04.027
ZHU Yanbo, LI Hongfei, JU Zhitong, LAN Hengxing, LIU Zhenqian, HAN Yutao. Improvement of shear strength and anti-disintegration performance of compacted loess[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 221-233. doi: 10.3969/j.issn.1001-1986.2021.04.027
Citation: ZHU Yanbo, LI Hongfei, JU Zhitong, LAN Hengxing, LIU Zhenqian, HAN Yutao. Improvement of shear strength and anti-disintegration performance of compacted loess[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 221-233. doi: 10.3969/j.issn.1001-1986.2021.04.027

黄土抗剪强度与耐崩解性能综合改良试验研究

doi: 10.3969/j.issn.1001-1986.2021.04.027
基金项目: 

国家自然科学基金重大项目 42041006

国家自然科学基金面上项目 41877247

详细信息
    第一作者:

    祝艳波,1985年生,男,辽宁阜新人,博士,副教授,从事黄土力学方面研究工作. E-mail:zhuyanbo@chd.edu.cn

  • 中图分类号: P642.3

Improvement of shear strength and anti-disintegration performance of compacted loess

  • 摘要: 为提高黄土高原治沟造地区挖填体力学特性与水稳定性,开展石灰、纳米二氧化硅、聚丙烯纤维和瓜尔豆胶改良黄土强度和崩解试验研究,对比分析其综合改良效果。结果表明:单一材料改良黄土性能仅在某一方面效果提升明显,如石灰和纳米二氧化硅显著提高黄土抗剪强度,提升幅度分别为36.3%~250.6% 与9.0%~99.7%;但在提升黄土耐崩解性能方面改良效果有限;2种材料仅延缓了黄土崩解时间,对最终崩解量无影响。聚丙烯纤维和瓜尔豆胶显著提升黄土的耐崩解性,如瓜尔豆胶可将黄土的崩解率降低至11.5%以下,而聚丙烯纤维改良黄土较素黄土的崩解率降低幅度为11.2%~51.9%;但2种改良材料提升黄土强度性能效果不佳,强度提高幅度仅为1.5%~22.9%和2.8%~15.6%。石灰混合聚丙烯纤维、纳米二氧化硅混合聚丙烯纤维2类复合改良材料既提高黄土耐崩解性、又能提高黄土抗剪强度,克服了单一改良材料对黄土强度与耐崩解性综合性能提高有限的短板,达到黄土综合性能提高的改良目的;其中9%石灰混合0.6%聚丙烯纤维、2%纳米二氧化硅混合0.6%聚丙烯纤维2种复合材料掺比改良效果最优,使改良黄土抗剪强度最高分别提高了109.8%和68.3%、崩解率分别降低了61.3%和49.8%。

     

  • 图  不同法向应力下不同掺量石灰改良黄土剪应力–剪切位移曲线

    Fig. 1  Shear stress-shear displacement curves of improved loess with different lime contents under different pressure

    图  石灰改良黄土剪切刚度和破坏点位移随掺量变化

    Fig. 2  Change of shear stiffness and failure point displacement of lime-improved loess with different concents

    图  不同掺量石灰改良黄土强度变化

    Fig. 3  Changes of shear strength of lime-improved loess with different concents

    图  纳米二氧化硅改良黄土剪应力–剪切位移曲线

    Fig. 4  Shear stress-shear displacement curves of loess improved by nano silica Nano-SiO2

    图  不同掺量纳米二氧化硅改良黄土剪切刚度变化

    Fig. 5  Changes of shear stiffness of loess improved by Nano-SiO2 with different concents

    图  不同掺量纳米二氧化硅改良黄土强度变化

    Fig. 6  Changes of shear strength of improved loess with different Nano-SiO2 contents

    图  聚丙烯纤维改良黄土剪应力–剪切位移曲线

    Fig. 7  Shear stress-shear displacement curves of loess improved by polypropylene fiber

    图  不同掺量聚丙烯纤维改良黄土强度变化

    Fig. 8  Changes of shear strength of improved loess with different polypropylene fiber contents

    图  瓜尔豆胶改良黄土剪应力–剪切位移曲线

    Fig. 9  Shear stress-shear displacement curves of loess improved by guar gum

    图  10  不同掺量瓜尔豆胶改良黄土抗剪强度变化

    Fig. 10  Changes of shear strength of improved loess with different guar gum contents

    图  11  不同掺量石灰改良黄土崩解性指标变化

    Fig. 11  Changes of disintegration index of lime-improved loess with different contents

    图  12  不同掺量纳米二氧化硅改良黄土崩解性指标变化

    Fig. 12  Changes of disintegration index of improved loess with different Nano-SiO2 concents

    图  13  不同掺量聚丙烯纤维改良黄土崩解性指标变化

    Fig. 13  Changes of disintegration index of improved loess with different polypropylene fiber concents

    图  14  瓜尔豆胶改良黄土崩解率变化

    Fig. 14  Changes of disintegration index of loess improved by guar gum

    图  15  改良黄土抗剪强度比值与掺量系数关系

    Fig. 15  Relationship between shear strength ratio and admixture coefficient of improved loess

    图  16  改良黄土试样崩解特性与掺量系数关系

    Fig. 16  Relationship between disintegration characteristics of improved loess samples and admixture coefficient

    图  17  改良黄土综合改良效果评价

    Fig. 17  Evaluation on comprehensive improvement effect of improved loess

    图  18  9%石灰+不同掺量聚丙烯纤维改良黄土崩解性

    Fig. 18  The disintegration of loess improved by 9% lime and different fiber contents

    图  19  石灰–聚丙烯纤维改良黄土抗剪强度对比

    Fig. 19  Comparison of shear strength of lime-polypropylene fiber improved loess

    图  20  2%纳米二氧化硅+不同掺量聚丙烯纤维改良黄土崩解性

    Fig. 20  The disintegration of loess improved by 2% Nano-SiO2 and different fiber contents

    图  21  纳米二氧化硅–聚丙烯纤维改良黄土抗剪强度对比

    Fig. 21  Comparison of shear strength of(Nano-SiO2)- polypropylene fiber improved loess

    表  1  土料基本物理性质指标

    Table  1  Basic physical property index of soil material

    天然含水率/% 天然密度/(g·cm –3) 塑限WP/% 液限WL/% 塑性指数IP
    9.80 1.61 14.52 29.83 15.31
    下载: 导出CSV

    表  2  试验方案

    Table  2  Test scheme

    试验类型 改良材料 材料掺量
    单一材料改良 石灰 3%、6%、9%、12%
    纳米二氧化硅 0.6%、1%、2%、3%
    聚丙烯纤维 0.2%、0.4%、0.6%、0.8%
    瓜尔豆胶 0.25%、0.50%、0.75%、1.00%
    复合材料改良 石灰+聚丙烯纤维 9%石灰+0.2%纤维
    9%石灰+0.4%纤维
    9%石灰+0.6%纤维
    9%石灰+0.8%纤维
    纳米二氧化硅+聚丙烯纤维 2%纳米SiO2+0.2%纤维
    2%纳米SiO2+0.4%纤维
    2%纳米SiO2+0.6%纤维
    2%纳米SiO2+0.8%纤维
    下载: 导出CSV
  • [1] 骆进, 项伟, 吴云刚, 等. 陕北黄土垂直节理形成机理的试验研究[J]. 长江科学院院报, 2010, 27(3): 38-41.. doi: 10.3969/j.issn.1001-5485.2010.03.009

    LUO Jin, XIANG Wei, WU Yungang, et al. Experimental study on formation of loess vertical joints in northern Shaanxi Province[J]. Journal of Yangtze River Scientific Research Institute, 2010, 27(3): 38-41.. doi: 10.3969/j.issn.1001-5485.2010.03.009
    [2] 李喜安, 黄润秋, 彭建兵. 黄土崩解性试验研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 3207-3213. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1095.htm

    LI Xi'an, HUANG Runqiu, PENG Jianbing. Experimental research on disintegration of loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Sup. 1): 3207-3213. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1095.htm
    [3] 王宁, 毛云程, 张得文, 等. 冻融循环对季节冻土区黄土路堑边坡的影响[J]. 公路交通科技(应用技术版), 2011, 7(4): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201104027.htm

    WANG Ning, MAO Yuncheng, ZHANG Dewen, et al. The influence of freeze-thaw cycles on the slopes of loess road cuts in seasonally frozen soil regions[J]. Highway and Transportation Science and Technology(Applied Technology Edition), 2011, 7(4): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201104027.htm
    [4] 朱才辉, 李宁. 降雨对沟谷状黄土高填方地基增湿影响研究[J]. 岩土工程学报, 2020, 42(5): 845-854. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005009.htm

    ZHU Caihui, LI Ning. Moistening effects of high-fill embankment due to rainfall infiltration in loess gully region[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 845-854. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005009.htm
    [5] 夏琼, 杨有海, 耿煊. 粉煤灰与石灰、水泥改良黄土填料的试验研究[J]. 兰州交通大学学报, 2008, 27(3): 40-43.. doi: 10.3969/j.issn.1001-4373.2008.03.011

    XIA Qiong, YANG Youhai, GENG Xuan. Experimental study on flyash-lime or flyash-cement loess filling[J]. Journal of Lanzhou Jiaotong University, 2008, 27(3): 40-43.. doi: 10.3969/j.issn.1001-4373.2008.03.011
    [6] 胡再强, 梁志超, 郭婧, 等. 非饱和石灰改良黄土的渗水系数预测[J]. 岩土工程学报, 2020, 42(增刊2): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S2005.htm

    HU Zaiqiang, LIANG Zhichao, GUO Jing, et al. Prediction of permeability coefficient of unsaturated lime improved loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(Sup. 2): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S2005.htm
    [7] 梁志超, 胡再强, 郭婧, 等. 非饱和石灰黄土土水特征与压缩湿陷特性研究[J]. 水力发电学报, 2020, 39(3): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202003007.htm

    LIANG Zhichao, HU Zaiqiang, GUO Jing, et al. Study on soil water characteristics and compressive collapsibility of unsaturated lime loess[J]. Journal of Hydroelectric Engineering, 2020, 39(3): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202003007.htm
    [8] 陈乐, 刘志彬, 周书中. 聚丙烯纤维加筋对高岭土固结压缩特性影响试验研究[J]. 岩土力学, 2015, 36(增刊1): 372-376. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1064.htm

    CHEN Le, LIU Zhibin, ZHOU Shuzhong. Influence of polypropylene fiber-reinforcement on consolidation and compression characteristics of kaolin[J]. Rock and Soil Mechanics, 2015, 36(Sup. 1): 372-376. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1064.htm
    [9] 曾军, 彭学先, 阮波, 等. 聚丙烯纤维红黏土无侧限抗压强度试验研究[J]. 铁道科学与工程学报, 2015, 12(3): 545-550.. doi: 10.3969/j.issn.1672-7029.2015.03.014

    ZENG Jun, PENG Xuexian, RUAN Bo, et al. Experimental study on unconfined compressive strength of polypropylene fiber reinforced red clay[J]. Journal of Railway Science and Engineering, 2015, 12(3): 545-550.. doi: 10.3969/j.issn.1672-7029.2015.03.014
    [10] 邓友生, 吴鹏, 赵明华, 等. 基于最优含水率的聚丙烯纤维增强膨胀土强度研究[J]. 岩土力学, 2017, 38(2): 349-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702007.htm

    DENG Yousheng, WU Peng, ZHAO Minghua, et al. Strength of expansive soil reinforced by polypropylene fiber under optimal water content[J]. Rock and Soil Mechanics, 2017, 38(2): 349-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702007.htm
    [11] 王菁莪, 米吉提, 郑洁. 木质素固沙剂固化黄土试验研究[J]. 人民黄河, 2010, 32(12): 170-171.. doi: 10.3969/j.issn.1000-1379.2010.12.071

    WANG Jing'e, MI Jiti, ZHENG Jie. Experimental study on the solidification of loess with lignin sand fixation agent[J]. Yellow River, 2010, 32(12): 170-171.. doi: 10.3969/j.issn.1000-1379.2010.12.071
    [12] 侯鑫, 马巍, 李国玉, 等. 木质素磺酸盐对兰州黄土力学性质的影响[J]. 岩土力学, 2017, 38(增刊2): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2003.htm

    HOU Xin, MA Wei, LI Guoyu, et al. Influence of lignosulfonate on mechanical properties of Lanzhou loess[J]. Rock and Soil Mechanics, 2017, 38(Sup. 2): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2003.htm
    [13] 伍剑锋. 冻融循环作用下石灰改良粉砂土特性研究[J]. 科学技术创新, 2021(3): 125-126.. doi: 10.3969/j.issn.1673-1328.2021.03.059

    WU Jianfeng. Research on the characteristics of lime-improved silt soil under freeze-thaw cycles[J]. Innovation in Science and Technology, 2021(3): 125-126.. doi: 10.3969/j.issn.1673-1328.2021.03.059
    [14] 李国勋, 张艳美, 马丁, 等. 纤维对纳米二氧化硅-石灰改良粉土力学性质的影响[J]. 土木与环境工程学报(中英文), 2020, 42(2): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202002006.htm

    LI Guoxun, ZHANG Yanmei, MA Ding, et al. Mechanical properties of nano-silica and lime stabilized silt reinforced by fiber[J]. Journal of Civil and Environmental Engineering(Chinese and English), 2020, 42(2): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202002006.htm
    [15] 彭宇, 张虎元, 林澄斌, 等. 抗疏力固化剂改性黄土工程性质及其改性机制[J]. 岩石力学与工程学报, 2017, 36(3): 762-772. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703026.htm

    PENG Yu, ZHANG Huyuan, LIN Chengbin, et al. Engineering properties and improvement mechanism of loess soil modified by consolid system[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 762-772. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703026.htm
    [16] 周建基, 梁收运, 张帆宇, 等. 石灰改良黄土的工程特性试验研究[J]. 铁道建筑, 2014(9): 105-108.. doi: 10.3969/j.issn.1003-1995.2014.09.29

    ZHOU Jianji, LIANG Shouyun, ZHANG Fanyu, et al. Experimental study on engineering performances of lime-stabilized loess[J]. Railway Engineering, 2014(9): 105-108.. doi: 10.3969/j.issn.1003-1995.2014.09.29
    [17] 彭丽云, 王剑烨. 玉米秸秆防腐及其粉土加筋效果研究[J]. 工程地质学报, 2017, 25(1): 132-138. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201701018.htm

    PENG Liyun, WANG Jianye. Experimental study on anti-corrosion of corn straw and its effect in silt improvement[J]. Journal of Engineering Geology, 2017, 25(1): 132-138. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201701018.htm
    [18] 朱敏, 倪万魁, 李向宁, 等. 黄土掺入聚丙烯纤维后的无侧限抗压强度和变形试验研究[J]. 科学技术与工程, 2020, 20(20): 8337-8343. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202020049.htm

    ZHU Min, NI Wankui, LI Xiangning, et al. Study on unconfined compressive strength and deformation after incorporating polypropylene fiber into loess[J]. Science Technology and Engineering, 2020, 20(20): 8337-8343. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202020049.htm
    [19] 安宁, 晏长根, 王亚冲, 等. 聚丙烯纤维加筋黄土抗侵蚀性能试验研究[J]. 岩土力学, 2021, 42(2): 501-510. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102022.htm

    AN Ning, YAN Changgen, WANG Yachong, et al. Experimental study on anti-erosion performance of polypropylene fiber reinforced loess[J]. Rock and Soil Mechanics, 2021, 42(2): 501-510. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102022.htm
    [20] 卢浩, 晏长根, 贾卓龙, 等. 聚丙烯纤维加筋黄土的抗剪强度和崩解特性[J/OL]. 交通运输工程学报: 1-12[2021-06-03]. http://kns.cnki.net/kcms/detail/61.1369.U.20210427.1541.002.html

    LU Hao, YAN Changgen, JIA Zhuolong, et al. Shear strength and disintegration properties of polypropylene fiber reinforced loess[J/OL]. Journal of Traffic and Transportation Engineering: 1-12[2021-06-03]. http://kns.cnki.net/kcms/detail/61.1369.U.20210427.1541.002.html
    [21] KONG Ran, ZHANG Fanyu, WANG Gonghui, et al. Stabilization of loess using Nano-SiO2[J]. Materials, 2018, 11(6): 1014.. doi: 10.3390/ma11061014
    [22] TABARSA A, LATIFI N, MEEHAN C L, et al. Laboratory investigation and field evaluation of loess improvement using nanoclay: A sustainable material for construction[J]. Construction and Building Materials, 2018, 158: 454-463.. doi: 10.1016/j.conbuildmat.2017.09.096
    [23] 孔冉. 纳米二氧化硅固化黄土力学性能和结构特征研究[D]. 甘肃: 兰州大学, 2019.

    KONG Ran. Study on mechanical properties and structural characteristics of nano-SiO2 stabilized loess[D]. Gansu: Lanzhou University, 2019.
    [24] 贺智强, 樊恒辉, 王军强, 等. 木质素加固黄土的工程性能试验研究[J]. 岩土力学, 2017, 38(3): 731-739. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703015.htm

    HE Zhiqiang, FAN Henghui, WANG Junqiang, et al. Experimental study of engineering properties of loess reinforced by lignosulfonate[J]. Rock and Soil Mechanics, 2017, 38(3): 731-739. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703015.htm
    [25] 刘钊钊, 王谦, 钟秀梅, 等. 木质素改良黄土的持水性和水稳性[J]. 岩石力学与工程学报, 2020, 39(12): 2582-2592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012019.htm

    LIU Zhaozhao, WANG Qian, ZHONG Xiumei, et al. Water holding capacity and water stability of lignin-modified loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2582-2592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012019.htm
    [26] 李文龙. 掺玻璃纤维粉煤灰煤矸石骨料混凝土强度与抗裂性能试验研究[J]. 建筑结构, 2020, 50(13): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG202013011.htm

    LI Wenlong. Experimental study on strength and crack resistance of coal gangue aggregate concrete mixed with glass fiber and fly ash[J]. Building Structure, 2020, 50(13): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG202013011.htm
    [27] 陈登, 宋旭艳, 姜正平, 等. 秸秆与粉煤灰复掺对混凝土性能的影响[J]. 混凝土与水泥制品, 2020(4): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW202004024.htm

    CHEN Deng, SONG Xuyan, JIANG Zhengping, et al. Effects of combined admixture of straw and fly ash on the properties of concrete[J]. China Concrete and Cement Products, 2020(4): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW202004024.htm
    [28] 戴文亭, 司泽华, 王振, 等. 剑麻纤维水泥加固土的路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 589-593. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202002024.htm

    CORREIA A, VENDA O P J, CUSTODIO D G. Effect of polypropylene fibers on the compressive and tensile strength of a soft soil, artificially stabilized with binders[J]. Geotextiles & Geomembranes, 2015, 43(2): 97-106. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202002024.htm
    [29] DAI Wenting, SI Zehua, WANG Zhen, et al. Test on road performance of soils stabilized by sisal fiber and ionic soil stabilizer with cement[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 589-593.
    [30] 江灿珲, 吴鸣飞, 刘瑾, 等. 高分子聚合物-剑麻纤维复合加固砂土抗压特性试验研究[J]. 河北工程大学学报(自然科学版), 2021, 38(1): 32-39.. doi: 10.3969/j.issn.1673-9469.2021.01.006

    JIANG Canhui, WU Mingfei, LIU Jin, et al. Experimental study on compressive characteristics of sand reinforced by polymer and sisal fiber[J]. Journal of Hebei University of Engineering(Natural Science Edition), 2021, 38(1): 32-39.. doi: 10.3969/j.issn.1673-9469.2021.01.006
    [31] 祝艳波, 余宏明, 杨艳霞, 等. 红层泥岩改良土特性室内试验研究[J]. 岩石力学与工程学报, 2013, 32(2): 425-432.. doi: 10.3969/j.issn.1000-6915.2013.02.026

    ZHU Yanbo, YU Hongming, YANG Yanxia, et al. Indoor experimental research on characteristics of improved red-mudstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 425-432.. doi: 10.3969/j.issn.1000-6915.2013.02.026
    [32] 杨志强, 郭见扬. 石灰处理土的物理力学性质及其微观机理的研究[J]. 岩土力学, 1991, 12(3): 11-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199103001.htm

    YANG Zhiqiang, GUO Jianyang. The physio-mechanical properties and micro-mechanism in lime-soil system[J]. Rock and Soil Mechanics, 1991, 12(3): 11-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199103001.htm
    [33] 程培峰, 陈勃同. 纳米二氧化硅对纤维固化土力学性质的影响[J]. 低温建筑技术, 2021, 43(2): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW202102011.htm

    CHENG Peifeng, CHEN Botong. Effect of nano-silica on mechanical properties of fiber reinforced soil[J]. Low Temperature Construction Technology, 2021, 43(2): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW202102011.htm
    [34] 张艳美, 马丁, 李国勋, 等. 纳米SiO2和石灰改良黄泛区粉土的力学特性研究[J/OL]. 工程地质学报: 1-7[2021-05-28]. https://doi.org/10.13544/j.cnki.jeg.2019-128

    ZHANG Yanmei, MA Ding, LI Guoxun, et al. Study on mechanical properties of Nano-SiO2 and lime stabilized silt in the yellow river flood area[J/OL]. Journal of Engineering Geology: 1-7[2021-05-28]. https://doi.org/10.13544/j.cnki.jeg.2019-128
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  12
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-21
  • 修回日期:  2021-06-24
  • 发布日期:  2021-08-25
  • 网络出版日期:  2021-09-10

目录

    /

    返回文章
    返回