留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅埋近距煤层开采覆岩与地表裂缝发育规律及控制

曹健 黄庆享

曹健, 黄庆享. 浅埋近距煤层开采覆岩与地表裂缝发育规律及控制[J]. 煤田地质与勘探, 2021, 49(4): 213-220. doi: 10.3969/j.issn.1001-1986.2021.04.026
引用本文: 曹健, 黄庆享. 浅埋近距煤层开采覆岩与地表裂缝发育规律及控制[J]. 煤田地质与勘探, 2021, 49(4): 213-220. doi: 10.3969/j.issn.1001-1986.2021.04.026
CAO Jian, HUANG Qingxiang. Regularity and control of overburden and surface fractures in shallow-contiguous seams[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 213-220. doi: 10.3969/j.issn.1001-1986.2021.04.026
Citation: CAO Jian, HUANG Qingxiang. Regularity and control of overburden and surface fractures in shallow-contiguous seams[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 213-220. doi: 10.3969/j.issn.1001-1986.2021.04.026

浅埋近距煤层开采覆岩与地表裂缝发育规律及控制

doi: 10.3969/j.issn.1001-1986.2021.04.026
基金项目: 

国家自然科学基金面上项目 51674190

国家自然科学基金面上项目 52074211

西安科技大学优秀博士学位论文培育计划项目 PY18002

详细信息
    第一作者:

    曹健,1991年生,男,山西大同人,博士,讲师,从事矿山岩层控制理论与绿色开采方面的教学与研究工作. E-mail:974613979@qq.com

  • 中图分类号: TU478

Regularity and control of overburden and surface fractures in shallow-contiguous seams

  • 摘要: 我国西部神府东胜煤田主要赋存浅埋近距煤层,煤层埋藏浅,覆岩上部厚松散层大范围分布,近距煤层开采导致覆岩与地表裂缝发育严重,加剧了原本脆弱的生态环境进一步恶化。为探究浅埋近距煤层开采覆岩与地表采动裂缝发育规律,掌握其控制方法,以柠条塔煤矿1-2煤层和2-2煤层开采为背景,结合实测统计分析、物理模拟和分形理论,掌握浅埋顶部单一煤层开采和重复采动下覆岩与地表裂缝发育特征,揭示煤柱布置对裂缝发育的控制作用。研究表明,煤层开采导致的地表裂缝可分为平行于工作面的动态裂缝和工作面开采边界地表裂缝(切眼边界侧地表裂缝和区段煤柱侧地表裂缝),动态裂缝在开采后能够实现自修复,工作面开采边界的地表裂缝不能自修复。下煤层开采区段煤柱侧覆岩与地表采动裂缝发育严重,其与区段煤柱错距密切相关。1-2煤层开采后,基岩垮落角为60°,土层垮落角为65°,边界煤柱侧地表裂缝的宽度为0.26 m。下部2-2煤层开采,煤柱叠置、错距20、40 m时,区段煤柱侧覆岩采动裂缝宽度分别为0.81、0.45和0.22 m,地表裂缝宽度分别为0.65、0.30和0.12 m。通过确定合理煤柱布置方式,能够有效控制覆岩和地表采动裂缝的发育程度,据此确定柠条塔煤矿1-2煤层和2-2煤层开采的合理煤柱错距应大于40 m。

     

  • 图  不同类型地表裂缝发育情况

    Fig. 1  Development

    图  物理模拟模型

    Fig. 2  Physical simulation model

    图  基本顶初次和第一次周期破断

    Fig. 3  The first break and the first periodic break of old roof

    图  裂缝发育高度与离层量

    Fig. 4  Fracture development height and layer separation value

    图  工作面倾向采动裂缝发育规律

    Fig. 5  Fractures development in working face inclination

    图  单一煤层开采地表裂缝宽度

    Fig. 6  Width of surface fractures of single seam mining

    图  2-2煤开采基本顶初次和第一次周期破断

    Fig. 7  Roof first broken and first period broken of No.2-2 seam

    图  重复采动下覆岩与地表采动裂缝活化发育

    Fig. 8  Mining-induced fracture activation and development in overburden rock and surface under repeated mining

    图  区段煤柱布置方式

    Fig. 9  Layout of coal pillar

    图  10  不同煤柱错距覆岩与地表裂缝宽度及特征

    Fig. 10  Width and features of overburden strata fractures and surface fractures in different pillar staggered distance

    图  11  不同煤柱错距覆岩与地表裂缝演化规律

    Fig. 11  Overburden strata fractures and surface fractures evolution in different pillar staggered distance

    图  12  不同煤柱错距的裂缝分形维数

    Fig. 12  Fractal dimension in different pillar staggered distance

    表  1  浅埋单一煤层开采地表裂缝发育特征实例统计[11-17]

    Table  1  Surface fractures development characteristics in shallow single seam mining[11-17]

    煤矿 工作面或煤层 采高/ m 埋深/ m 覆岩岩性 地表裂缝发育实测
    哈拉沟 22407 5.39 平均136.4 基岩平均88.9 m,松散层42 m 煤柱侧地表裂缝呈弧形,指向工作面内部,不能自修复,动态裂缝能自修复
    补连塔 12406 4.81 160.0~220.0 基岩148~200 m,松散层3~30 m 边界裂缝呈“O”形圈分布,主要分布在工作面内部距边界40 m,裂缝带宽46~50 m
    51101 5.2 平均146.0 松散层10~30.8 m 地表裂缝呈“O”形分布,边界裂缝呈弧形
    陈家山 4-2 10.30 约200.0 区内基岩裸露 煤层倾角5°~7°,工作面两侧裂缝边界角70°~86°
    大柳塔 12208 7.35 40.4 松散层7 m,基岩33 m 平行于工作面的动态裂缝在沉陷稳定后闭合,而区段煤柱侧边界裂缝不可闭合
    22201 3.95 72.5 松散层12 m,基岩61 m
    52304 6.96 235.0 松散层30 m,基岩205 m
    串草圪旦 4104 3.50 80.7 松散层(红土及黄土)37 m,基岩41 m 动态裂缝超前工作面11 m,间距17.1 m
    6106 12.70 105.8 松散层14 m,基岩92 m 动态裂缝超前工作面3.6 m,间距12 m
    6104 12.80 117.4 松散层24 m,基岩81 m 动态裂缝超前工作面12 m,间距17.5 m
    张家峁 15201 6.30 90.0~220.0 松散层平均50 m,基岩70 m 最外侧煤柱地表裂缝位于巷道外20~25 m
    北八特 9煤,井15,井16 40.0~200.0 单一煤层:地表裂缝宽0.1~0.5 m,裂缝长度大于0.5 m,最长100 m 9煤与井15和井16采空区叠置区域,地表塌陷最严重
    下载: 导出CSV

    表  2  浅埋煤层群重复采动地表裂缝发育特征实例统计[18-19]

    Table  2  Surface development characteristics in shallow multi-seam repetition mining[18-19]

    矿井 工作面 采高/m 埋深/m 层间距/m 覆岩岩性 下煤层开采地表裂缝发育特征实测
    柠条塔 1-2煤N1114 1.85 64~156 35.0 基岩厚度54~66 m,土层厚度10~90 m N1114工作面:煤柱侧地裂缝宽度最大0.3 m;N1206工作面:煤柱错距小于10 m时,地表裂缝宽度最大达1.5 m;煤柱错距大于40 m后,地表裂缝宽度0.4 m
    2-2煤N1206 5.90 83~205
    大柳塔 2-2煤22306 4.50 90 155.6~164.7 地表黄土层厚度约50 m 22306和52304工作面斜交,煤柱叠置区地表裂缝发育严重,地表塌陷槽宽2 m;5-2煤层的煤柱处于2-2煤层采空区下方时,地表裂缝宽度小于0.15 m
    5-2煤52304 6.45 250
    大柳塔 1-2煤12208 6.00 32.6~39.2 地表黄土层厚度约15 m 22201工作面煤柱布置在上煤层采空区下方,裂缝破坏程度比实例2中52304工作面小
    2-2煤22201 3.65 75
    下载: 导出CSV

    表  3  柠条塔、大柳塔矿不同煤柱错距地表裂缝宽度

    Table  3  Surface fractures width in different pillar staggered distance in Ningtiaota and Daliuta Coal Mine

    矿井/煤层 区段煤柱错距/m 煤柱侧地表裂缝宽度/m
    柠条塔/1-2与2-2 0 1.50
    50 0.40
         
    大柳塔/2-2与5-2 叠置 2.00
    170 0.15
    下载: 导出CSV
  • [1] 黄庆享, 曹健, 杜君武, 等. 浅埋近距煤层开采三场演化规律与合理煤柱错距研究[J]. 煤炭学报, 2019, 44(3): 681-689. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201903004.htm

    HUANG Qingxiang, CAO Jian, DU Junwu, et al. Research on three-field evolution and rational coal pillar staggered distance in shallow buried closely spaced multi-seam mining[J]. Journal of China Coal Society, 2019, 44(3): 681-689. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201903004.htm
    [2] 姚邦华, 周海峰, 陈龙. 重复采动下覆岩裂隙发育规律模拟研究[J]. 采矿与安全工程学报, 2010, 27(3): 443-446.. doi: 10.3969/j.issn.1673-3363.2010.03.029

    YAO Banghua, ZHOU Haifeng, CHEN Long. Numerical simulation about fracture development in overlying rocks under repeated mining[J]. Journal of Mining & Safety Engineering, 2010, 27(3): 443-446.. doi: 10.3969/j.issn.1673-3363.2010.03.029
    [3] 王文学, 隋旺华, 董青红, 等. 松散层下覆岩裂隙采后闭合效应及重复开采覆岩破坏预测[J]. 煤炭学报, 2013, 38(10): 1728-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201310003.htm

    WANG Wenxue, SUI Wanghua, DONG Qinghong, et al. Closure effect of mining-induced fractures under sand aquifers and prediction of overburden failure due to re-mining[J]. Journal of China Coal Society, 2013, 38(10): 1728-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201310003.htm
    [4] 余明高, 滕飞, 褚廷湘, 等. 浅埋煤层重复采动覆岩裂隙及漏风通道演化模拟研究[J]. 河南理工大学学报(自然科学版), 2018, 37(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201801001.htm

    YU Minggao, TENG Fei, CHU Tingxiang, et al. Simulation study on the evolution of the overlying strata fractures and air-leaking passage under repeated mining of shallow buried coal seams[J]. Journal of Henan Polytechnic University(Natural Science), 2018, 37(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201801001.htm
    [5] 黄庆享, 杜君武, 侯恩科, 等. 浅埋煤层群覆岩与地表裂隙发育规律和形成机理研究[J]. 采矿与安全工程学报, 2019, 36(1): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201901002.htm

    HUANG Qingxiang, DU Junwu, HOU Enke, et al. Research on overburden and ground surface cracks distribution and formation mechanism in shallow coal seams group mining[J]. Journal of Mining & Safety Engineering, 2019, 36(1): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201901002.htm
    [6] 张春雷, 李占平, 康强. 近距煤层群不同层间岩层结构下围岩裂隙演化规律[J]. 煤矿安全, 2018, 49(9): 91-95. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201809021.htm

    ZHANG Chunlei, LI Zhanping, KANG Qiang. Fracture evolution laws of surrounding rock under different strata rock structures in short distance coal seam group[J]. Safety in Coal Mines, 2018, 49(9): 91-95. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201809021.htm
    [7] 李树刚, 丁洋, 安朝峰, 等. 近距离煤层重复采动覆岩裂隙形态及其演化规律实验研究[J]. 采矿与安全工程学报, 2016, 33(5): 904-910. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201605022.htm

    LI Shugang, DING Yang, AN Zhaofeng, et al. Experimental research on the shape and dynamic evolution of repeated mining-induced fractures in short-distance coal seams[J]. Journal of Mining & Safety Engineering, 2016, 33(5): 904-910. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201605022.htm
    [8] 文虎, 于志金, 翟小伟, 等. 叠加开采下浅埋煤层裂隙演化与连通特征[J]. 煤矿安全, 2015, 46(12): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201512013.htm

    WEN Hu, YU Zhijin, ZHAI Xiaowei, et al. Crack development and interconnected characteristics of closely spaced shallow coal seams under overlapping mining[J]. Safety in Coal Mines, 2015, 46(12): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201512013.htm
    [9] 刘腾飞. 煤矿开采导水裂缝发育高度及影响因素分析[J]. 煤田地质与勘探, 2013, 41(3): 34-37. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=7e33d6e3-63c5-4690-8fdf-ac5d72bfba4e

    LIU Tengfei. Height of water-conducting crack and its influence factors in coal mine[J]. Coal Geology & Exploration, 2013, 41(3): 34-37. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=7e33d6e3-63c5-4690-8fdf-ac5d72bfba4e
    [10] 白海波. 徐州矿区地裂缝成因机制的探讨[J]. 煤田地质与勘探, 2002, 30(2): 46-48. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=702dfa30-5ae7-4ec6-bd27-76dff73bc9e9

    BAI Haibo. Research on formation mechanism of earth fissure in Xuzhou coal mining area[J]. Coal Geology & Exploration, 2002, 30(2): 46-48. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=702dfa30-5ae7-4ec6-bd27-76dff73bc9e9
    [11] 王晖, 李智毅, 杨为民, 等. 松散黄土堆积层下煤矿采空区地表塌陷形成机理[J]. 现代地质, 2008, 22(5): 877-883.. doi: 10.3969/j.issn.1000-8527.2008.05.025

    WANG Hui, LI Zhiyi, YANG Weimin, et al. Formation mechanism of the ground collapse in mined-out area of coal mine underlying loose loess deposit[J]. Geoscience, 2008, 22(5): 877-883.. doi: 10.3969/j.issn.1000-8527.2008.05.025
    [12] 王军, 赵欢欢, 刘晶歌. 薄基岩浅埋煤层工作面地表动态移动规律研究[J]. 矿业安全与环保, 2016, 43(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201601006.htm

    WANG Jun, ZHAO Huanhuan, LIU Jingge. Study on dynamic law of surface movement above working face of shallow-buried coal seam with thin bedrock[J]. Mining Safety & Environmental Protection, 2016, 43(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201601006.htm
    [13] 李建伟. 西部浅埋厚煤层高强度开采覆岩导气裂缝的时空演化机理及控制研究[D]. 徐州: 中国矿业大学, 2017.

    LI Jianwei. Spatial-temporal evolution mechanism and control technology of air leakage fissures in high-intensity mining of shallow thick coal seam[D]. Xuzhou: China University of Mining and Technology, 2017.
    [14] 刘辉. 西部黄土沟壑区采动地裂缝发育规律及治理技术研究[D]. 徐州: 中国矿业大学, 2014.

    LIU Hui. The development law and treatment technology of ground fissures due to underground mining in loess hilly area of western China[D]. Xuzhou: China University of Mining and Technology, 2014.
    [15] 李圣军. 哈拉沟煤矿高强度开采覆岩与地表破坏特征研究[D]. 焦作: 河南理工大学, 2015.

    LI Shengjun. Research on overburden strata and surface failure characteristics with high intensity mining in Halagou coal mine[D]. Jiaozuo: Henan Polytechnic University, 2015.
    [16] 李琛. 近水平煤层采动边界裂缝导水性研究[D]. 廊坊: 华北科技学院, 2016.

    LI Chen. The research for hydraulic conductivity of mining boundary fracture in nearly horizontal coal mine seam[D]. Langfang: North China Institute of Science and Technology, 2016.
    [17] 胡振琪, 王新静, 贺安民. 风积沙区采煤沉陷地裂缝分布特征与发生发育规律[J]. 煤炭学报, 2014, 39(1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201401002.htm

    HU Zhenqi, WANG Xinjing, HE Anmin. Distribution characteristic and development rules of ground fissures due to coal mining in windy and sandy region[J]. Journal of China Coal Society, 2014, 39(1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201401002.htm
    [18] 王业显. 大柳塔矿重复采动条件下地表沉陷规律研究[D]. 徐州: 中国矿业大学, 2014.

    WANG Yexian. Study on regularity of surface subsidence due to repeated mining taking Daliuta coal mine as example[D]. Xuzhou: China University of Mining and Technology, 2014.
    [19] 赵万库. 韩城矿区多煤层重复开采致灾规律研究[D]. 西安: 西安科技大学, 2018.

    ZHAO Wanku. Study on the regularity of disasters caused by repeated mining of multiple coal seams in Hancheng mining area[D]. Xi'an: Xi'an University of Science and Technology, 2018.
    [20] 谢和平, 于广明, 杨伦, 等. 采动岩体分形裂隙网络研究[J]. 岩石力学与工程学报, 1999, 18(2): 147-151. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX902.006.htm

    XIE Heping, YU Guangming, YANG Lun, et al. Research on the fractal effects of crack network in overburden rock stratum[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(2): 147-151. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX902.006.htm
    [21] 张向东, 徐峥嵘, 苏仲杰, 等. 采动岩体分形裂隙网络计算机模拟研究[J]. 岩石力学与工程学报, 2001, 20(6): 809-812.. doi: 10.3321/j.issn:1000-6915.2001.06.012

    ZHANG Xiangdong, XU Zhengrong, SU Zhongjie, et al. Research of the imitation about the fractal crack in overburden rock stratum by computer[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(6): 809-812.. doi: 10.3321/j.issn:1000-6915.2001.06.012
    [22] 张永波, 李荣华, 刘秀英. 采动岩体分形裂隙网络演化规律的试验研究[J]. 工程勘察, 2004(2): 33-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200402009.htm

    ZHANG Yongbo, LI Ronghua, LIU Xiuying. Experiment research of the evolvement laws for the crack network of rocks[J]. Geotechnical Investigation & Surveying, 2004(2): 33-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200402009.htm
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  12
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 修回日期:  2021-04-30
  • 发布日期:  2021-08-25
  • 网络出版日期:  2021-09-10

目录

    /

    返回文章
    返回