留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄂尔多斯盆地北部深埋煤层工作面涌水量预测方法

杨建 王皓 梁向阳 黄浩

杨建, 王皓, 梁向阳, 黄浩. 鄂尔多斯盆地北部深埋煤层工作面涌水量预测方法[J]. 煤田地质与勘探, 2021, 49(4): 185-191. doi: 10.3969/j.issn.1001-1986.2021.04.022
引用本文: 杨建, 王皓, 梁向阳, 黄浩. 鄂尔多斯盆地北部深埋煤层工作面涌水量预测方法[J]. 煤田地质与勘探, 2021, 49(4): 185-191. doi: 10.3969/j.issn.1001-1986.2021.04.022
YANG Jian, WANG Hao, LIANG Xiangyang, HUANG Hao. Water inflow forecasting method of deep buried coal working face in northern Ordos Basin, China[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 185-191. doi: 10.3969/j.issn.1001-1986.2021.04.022
Citation: YANG Jian, WANG Hao, LIANG Xiangyang, HUANG Hao. Water inflow forecasting method of deep buried coal working face in northern Ordos Basin, China[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 185-191. doi: 10.3969/j.issn.1001-1986.2021.04.022

鄂尔多斯盆地北部深埋煤层工作面涌水量预测方法

doi: 10.3969/j.issn.1001-1986.2021.04.022
基金项目: 

国家自然科学基金项目 41302214

中煤科工集团西安研究院有限公司科技创新基金面上项目 2018XAYMS03

详细信息
    第一作者:

    杨建,1979年生,男,江苏盐城人,博士/博士后,研究员,从事煤矿防治水研究. E-mail:yangjian@cctegxian.com

  • 中图分类号: TD742+.1

Water inflow forecasting method of deep buried coal working face in northern Ordos Basin, China

  • 摘要: 鄂尔多斯盆地北部侏罗纪深埋区中生代地层以河流相沉积为主,呈分阶段的多旋回演化特点,导致煤层顶板含隔水层交替分布;由于地表大部分为毛乌素沙漠,降水入渗补给系数大,第四系松散层储水能力强,充足的补给水源造成煤层顶板直接充水含水层富水性较强,其中最主要的充水含水层为七里镇砂岩,以七里镇砂岩为关键层,将煤层至七里镇砂岩概化为一个直接充水含水层。承压水井大降深抽水时,当井中水位低于含水层顶板,井附近的含水层会出现无压水流区,形成承压–无压水井,采用分段法计算流向井的流量,包括无压水区和承压水区。实际工作面回采过程中,井中水位已降低至煤层底板;传统的承压–无压水井公式假设条件为井径较小(≤m级),而实际工作面回采过程中,随着覆岩导水裂隙带对七里镇砂岩关键充水含水层的破坏,导致整个煤层顶板形成巨大的采空区疏水井(102~103 m级),且该采空区疏水井半径逐渐增大,传统公式适用性不高。基于《地下水动力学》中的承压–无压水井公式,结合鄂尔多斯盆地北部深埋煤炭开采过程中采空区疏水井演化过程,建立适合于深埋区开采扰动下的采空区疏水井承压–无压水公式;以葫芦素煤矿首采工作面为研究对象,利用地质勘探和井下揭露获得的相关水文地质参数,计算葫芦素煤矿首采工作面回采过程中涌水量。结果表明:工作面回采初期,由于导水裂隙带未充分发育,尚未沟通七里镇砂岩,此阶段实际涌水量偏小;中后期导水裂隙带发育至七里镇砂岩,涌水量计算值与实际值较为接近,证明深埋煤层工作面涌水量计算公式可较准确地预测研究区工作面回采过程中的涌水量。本次建立的深埋工作面涌水量计算公式,广泛适用于我国西部侏罗纪煤田区,可为深埋煤田区煤炭资源安全开采提供科学的水害防治依据。

     

  • 图  鄂尔多斯盆地北部侏罗纪煤炭深埋区位置及范围

    Fig. 1  Location and scope of Jurassic coal deep-buried area in northern Ordos Basin

    图  鄂尔多斯盆地北部侏罗纪煤炭深埋区地层柱状图

    Fig. 2  Stratigraphic column of Jurassic coal deep-buried area in northern Ordos Basin

    图  煤层开采过程中承压–无压水井变化特征

    Fig. 3  Variation characteristics of confined-phreatic wells during coal mining

    图  工作面回采过程中涌水量计算值和实测值

    Fig. 4  Calculated and measured values of water inflow during mining

    表  1  七里镇砂岩含水层分布特征

    Table  1  Distribution characteristics of Qilizhen sandstone aquifer

    矿井 七里镇砂岩
    与煤层距离/m 厚度/m
    纳林河二号 77.4~109.4 15.9~51.3
    巴彦高勒 75.0~95.4 23.5~63.5
    母杜柴登 65.2~75.1 17.7~75.2
    门克庆 31.5~59.9 17.0~46.8
    葫芦素 60.3~80.1 4.3~6.5
    下载: 导出CSV

    表  2  工作面顶板地层渗透系数

    Table  2  Permeability coefficient of roof strata in working face

    阶段 抽水试验孔 渗透系数/(m·d–1) 渗透系数平均值/(m·d–1)
    煤田勘探 HK22、H28 0.022 4~0.053 6 0.054 9
    井检孔 检2 0.027 1~0.033 0
    水文补勘 H1、H2、H3、H4、H5、H6、H7、H8、H9、H10、HD1 0.002 0~0.089 5
    工作面顶板钻孔 G5、G6、G8 0.064 6~0.272 9
    下载: 导出CSV

    表  3  工作面水文地质参数及涌水量预测结果

    Table  3  Hydrogeological parameters and prediction results of water inflow of working face

    R0/m L/m rw/m R/m Q/(m3·h–1) Qc/(m3·h–1)
    1 124.7 300 174.8 1 299.5 309.7 239
    600 247.2 1 371.9 362.6 357
    800 285.5 1 410.1 389.0 377
    1 100 334.7 1 459.4 422.0 380
    1 500 390.9 1 515.6 458.5 390
    2 000 451.4 1 576.0 496.9 495
    2 500 504.6 1 629.3 530.1 530
    3 000 552.8 1 677.5 559.7 564
    3 500 597.1 1 721.8 586.7 585
    4 000 638.3 1 763.0 611.6 613
    下载: 导出CSV
  • [1] 王双明. 鄂尔多斯盆地构造演化和构造控煤作用[J]. 地质通报, 2011, 30(4): 544-552.. doi: 10.3969/j.issn.1671-2552.2011.04.011

    WANG Shuangming. Ordos Basin tectonic evolution and structural control of coal[J]. Geological Bulletin of China, 2011, 30(4): 544-552.. doi: 10.3969/j.issn.1671-2552.2011.04.011
    [2] 张泓, 白清昭, 张笑薇, 等. 鄂尔多斯聚煤盆地的形成及构造环境[J]. 煤田地质与勘探, 1995, 23(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT503.000.htm

    ZHANG Hong, BAI Qingzhao, ZHANG Xiaowei, et al. Formation of the Ordos Basin and its coal-forming tectonic environment[J]. Coal Geology & Exploration, 1995, 23(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT503.000.htm
    [3] 缪协兴, 王长申, 白海波. 神东矿区煤矿水害类型及水文地质特征分析[J]. 采矿与安全工程学报, 2010, 27(3): 285-291.. doi: 10.3969/j.issn.1673-3363.2010.03.001

    MIAO Xiexing, WANG Changshen, BAI Haibo. Hydrogeologic characteristics of mine water hazards in Shendong mining area[J]. Journal of Mining & Safety Engineering, 2010, 27(3): 285-291.. doi: 10.3969/j.issn.1673-3363.2010.03.001
    [4] 顾大钊. 晋陕蒙接壤区大型煤炭基地地下水保护利用与生态修复[M]. 北京: 科学出版社, 2015.

    GU Dazhao. Groundwater protection, utilization and ecological restoration of large coal base in the contiguous area of Shanxi, Shaanxi and Inner Mongolia[M]. Beijing: Science Press, 2015.
    [5] 杨建, 梁向阳, 丁湘. 蒙陕接壤区深埋煤层开发过程中矿井涌水量变化特征[J]. 煤田地质与勘探, 2017, 45(4): 97-101.. doi: 10.3969/j.issn.1001-1986.2017.04.017

    YANG Jian, LIANG Xiangyang, DING Xiang. Variation characteristics of mine inflow during mining of deep buried coal seams in Shaanxi and Inner Mongolia contiguous area[J]. Coal Geology & Exploration, 2017, 45(4): 97-101.. doi: 10.3969/j.issn.1001-1986.2017.04.017
    [6] 李东, 刘生优, 张光德, 等. 鄂尔多斯盆地北部典型顶板水害特征及其防治技术[J]. 煤炭学报, 2017, 42(12): 3249-3254. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201712023.htm

    LI Dong, LIU Shengyou, ZHANG Guangde, et al. Typical roof water disasters and its prevention & control technology in the north of Ordos Basin[J]. Journal of China Coal Society, 2017, 42(12): 3249-3254. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201712023.htm
    [7] 刘洋, 张幼振. 浅埋煤层工作面涌水量预测方法研究[J]. 采矿与安全工程学报, 2010, 27(1): 116-120.. doi: 10.3969/j.issn.1673-3363.2010.01.022

    LIU Yang, ZHANG Youzhen. Forecast method for water inflow from working face in shallowly buried coal seam[J]. Journal of Mining & Safety Engineering, 2010, 27(1): 116-120.. doi: 10.3969/j.issn.1673-3363.2010.01.022
    [8] 国家安全生产监督管理总局. 煤矿安全规程[M]. 北京: 煤炭工业出版社, 2011.

    State Administration of Work Safety. Safety regulations in coal mine[M]. Beijing: China Coal Industry Publishing House, 2011.
    [9] 虎维岳, 闫丽. 对矿井涌水量预测问题的分析与思考[J]. 煤炭科学技术, 2016, 44(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601003.htm

    HU Weiyue, YAN Li. Analysis and consideration on prediction problems of mine water inflow volume[J]. Coal Science and Technology, 2016, 44(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601003.htm
    [10] 周振方, 靳德武, 虎维岳, 等. 煤矿工作面推采采空区涌水双指数动态衰减动力学研究[J]. 煤炭学报, 2018, 43(9): 2587-2594. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809027.htm

    ZHOU Zhenfang, JIN Dewu, HU Weiyue, et al. Double-exponential variation law of water-inflow from roof aquifer in goaf of working face with mining process[J]. Journal of China Coal Society, 2018, 43(9): 2587-2594. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809027.htm
    [11] 刘洋, 王振荣, 牛建立. 工作面涌水量预测方法的确定[J]. 矿业安全与环保, 2010, 37(5): 29-30.. doi: 10.3969/j.issn.1008-4495.2010.05.010

    LIU Yang, WANG Zhenrong, NIU Jianli. Determination of prediction method of water inflow in working face[J]. Mining Safety & Environmental Protection, 2010, 37(5): 29-30.. doi: 10.3969/j.issn.1008-4495.2010.05.010
    [12] 李永涛, 杨建. 基于顶板水预疏放的首采工作面涌水规律[J]. 煤田地质与勘探, 2019, 47(4): 104-109.. doi: 10.3969/j.issn.1001-1986.2019.04.016

    LI Yongtao, YANG Jian. Water inflow law of the first working face based on water pre-draining from roof[J]. Coal Geology & Exploration, 2019, 47(4): 104-109.. doi: 10.3969/j.issn.1001-1986.2019.04.016
    [13] 施龙青, 王雅茹, 邱梅, 等. 时间序列模型在工作面涌水量预测中的应用[J]. 煤田地质与勘探, 2020, 48(3): 108-115.. doi: 10.3969/j.issn.1001-1986.2020.03.016

    SHI Longqing, WANG Yaru, QIU Mei, et al. Application of time series model in water inflow prediction of working face[J]. Coal Geology & Exploration, 2020, 48(3): 108-115.. doi: 10.3969/j.issn.1001-1986.2020.03.016
    [14] 梁积伟. 鄂尔多斯盆地侏罗系沉积体系和层序地层学研究[D]. 西安: 西北大学, 2007.

    LIANG Jiwei. Research on sedimentary system and squence stratigraphy of the Jurassic in Ordos Basin[D]. Xi'an: Northwest University, 2007.
    [15] 赵俊峰. 鄂尔多斯盆地直罗-安定期原盆恢复[D]. 西安: 西北大学, 2007.

    ZHAO Junfeng. Restoration of the primary Ordos Basin in Zhiluo-Anding Period[D]. Xi'an: Northwest University, 2007.
    [16] 李向平, 陈刚, 章辉若, 等. 鄂尔多斯盆地中生代构造事件及其沉积响应特点[J]. 西安石油大学学报(自然科学版), 2006, 21(3): 1-4.. doi: 10.3969/j.issn.1673-064X.2006.03.001

    LI Xiangping, CHEN Gang, ZHANG Huiruo, et al. Mesozoic tectonic events in Ordos Basin and their sedimentary responses[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2006, 21(3): 1-4.. doi: 10.3969/j.issn.1673-064X.2006.03.001
    [17] 梁向阳, 杨建, 曹志国. 呼吉尔特矿区矿井涌水特征及其沉积控制[J]. 煤田地质与勘探, 2020, 48(1): 138-144. doi: 10.3969/j.issn.1001-1986.2020.01.018

    LIANG Xiangyang, YANG Jian, CAO Zhiguo. Characteristics and sedimental control of mine water outflow in Hujirt mining area[J]. Coal Geology & Exploration, 2020, 48(1): 138-144. doi: 10.3969/j.issn.1001-1986.2020.01.018
    [18] 杨建, 刘洋, 刘基. 基于沉积控水的鄂尔多斯盆地侏罗纪煤田防治水关键层研究[J]. 煤矿安全, 2018, 49(4): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201804009.htm

    YANG Jian, LIU Yang, LIU Ji. Study on key layer of water prevention and control in Ordos Basin Jurassic Coalfield based on sedimentary water control theory[J]. Safety in Coal Mines, 2018, 49(4): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201804009.htm
    [19] 武强, 徐华, 赵颖旺, 等. 基于"三图法"煤层顶板突水动态可视化预测[J]. 煤炭学报, 2016, 41(12): 2968-2974. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201612006.htm

    WU Qiang, XU Hua, ZHAO Yingwang, et al. Dynamic visualization and prediction for water bursting on coal roof based on"three maps method"[J]. Journal of China Coal Society, 2016, 41(12): 2968-2974. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201612006.htm
    [20] 侯光才. 鄂尔多斯白垩系盆地地下水系统及其水循环模式研究[D]. 长春: 吉林大学, 2008.

    HOU Guangcai. Groundwater system and water circulation pattern in Ordos Cretaceous groundwater basin[D]. Changchun: Jilin University, 2008.
    [21] 唐克旺, 王浩, 刘畅. 陕北红碱淖湖泊变化和生态需水初步研究[J]. 自然资源学报, 2003, 18(3): 304-309. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX200303006.htm

    TANG Kewang, WANG Hao, LIU Chang. Preliminary study of Hongjiannao Lake's variation and ecological water demand[J]. Journal of Natural Resources, 2003, 18(3): 304-309. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX200303006.htm
    [22] 杨建, 刘基, 靳德武, 等. 有机-无机联合矿井突水水源判别方法[J]. 煤炭学报, 2018, 43(10): 2886-2894. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201810028.htm

    YANG Jian, LIU Ji, JIN Dewu, et al. Method of determining mine water inrush source based on combination of organic-inorganic water chemistry[J]. Journal of China Coal Society, 2018, 43(10): 2886-2894. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201810028.htm
    [23] 贺勤, 刘正奇. 毛乌素沙漠-世界沙漠暴雨中心[J]. 内蒙古气象, 1996(3): 5-15. https://www.cnki.com.cn/Article/CJFDTOTAL-NMQX603.001.htm

    HE Qin, LIU Zhengqi. Mu Us Desert: The world desert rainstorm center[J]. Meteorology Journal of Inner Mongolia, 1996(3): 5-15. https://www.cnki.com.cn/Article/CJFDTOTAL-NMQX603.001.htm
    [24] 薛禹群, 吴吉春. 地下水动力学[M]. 北京: 地质出版社, 2010.

    XUE Yuqun, WU Jichun. Groundwater dynamics[M]. Beijing: Geological Publishing House, 2010.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  9
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-11
  • 修回日期:  2021-04-30
  • 发布日期:  2021-08-25
  • 网络出版日期:  2021-09-10

目录

    /

    返回文章
    返回