留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤层底板隐蔽水害危险源效应与定位实验研究

李攀峰

李攀峰. 煤层底板隐蔽水害危险源效应与定位实验研究[J]. 煤田地质与勘探, 2021, 49(4): 178-184. doi: 10.3969/j.issn.1001-1986.2021.04.021
引用本文: 李攀峰. 煤层底板隐蔽水害危险源效应与定位实验研究[J]. 煤田地质与勘探, 2021, 49(4): 178-184. doi: 10.3969/j.issn.1001-1986.2021.04.021
LI Panfeng. Hazard source effect and location experiment of concealed water disaster in coal seam floor[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 178-184. doi: 10.3969/j.issn.1001-1986.2021.04.021
Citation: LI Panfeng. Hazard source effect and location experiment of concealed water disaster in coal seam floor[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 178-184. doi: 10.3969/j.issn.1001-1986.2021.04.021

煤层底板隐蔽水害危险源效应与定位实验研究

doi: 10.3969/j.issn.1001-1986.2021.04.021
基金项目: 

中煤地质集团有限公司科技发展专项资金项目 ZMDZJTKJ-2019-03

详细信息
    第一作者:

    李攀峰,1980年生,男,安徽临泉人,高级工程师,从事煤炭地质及水工环勘查工作. E-mail:29105576@qq.com

  • 中图分类号: TD745

Hazard source effect and location experiment of concealed water disaster in coal seam floor

  • 摘要: 近年来隐蔽于煤层底板的导水陷落柱和断层突水已造成多个矿井被淹,给企业带来巨大经济损失和安全威胁。为查明上述隐蔽危险源的水文地质效应,探索其定位方法,根据华北石炭–二叠纪煤田的水文地质条件,进行危险源位于测区内部的沙槽实验研究。实验显示:流场稳定后隐伏陷落柱效应表现为水头、水温和离子浓度等值线均呈同心的闭合圈状,危险源位于最大等值线闭合圈内;在危险源上游区水头等值线密度变小,下游区密度变大;温度和离子浓度等值线分布则相反,在上游区等值线密度变大,下游区密度变小。隐伏断层的效应表现为水头、水温和离子浓度的等值线均呈平行线状,危险源位于2条最大平行线之间。同样,水头等值线在危险源的下游区密度变大,上游区密度变小;温度和离子浓度等值线则相反。2种危险源的温度和离子浓度最大等值线范围都远大于水头等值线的范围和危险源的实际尺寸,而危险源实际位置都靠近等值线密度大的一侧。根据实验结果,提出图解法和流场拟合法2种定位危险源的方法,其误差都不大于6 m。本文关于危险源效应的检测方法可用于华北石炭–二叠纪煤矿底板隐蔽导水陷落柱或断层在薄层灰岩含水层中水头、温度和离子浓度效应的检测,为其定位和治理提供依据。

     

  • 图  实验沙槽俯视图和含水层底板平面图

    Fig. 1  View of sand trough and plan of aquifer floor

    图  沿水流方向沙槽内实验物理模型剖面图

    Fig. 2  Cross section of physical model along flow direction

    图  陷落柱在流场稳定后水头等值线

    Fig. 3  Water head contours at steady flow field of collapsed column

    图  陷落柱在流场稳定后温度等值线

    Fig. 4  Temperature contours at steady flow field of collapsed column

    图  陷落柱在流场稳定后Cl质量浓度等值线

    Fig. 5  Concentration contours of Cl at steady flow field of collapsed column

    图  导水断层流场稳定后水头等值线

    Fig. 6  Water head contours at steady flow field of fault

    图  导水断层流场稳定后水温等值线

    Fig. 7  Water temperature contours at steady flow field of fault

    图  测区内流场稳定后导水断层水中Cl质量浓度等值线

    Fig. 8  Concentration contours of Cl at steady flow field if fault is in monitored area

    图  10测点时陷落柱等水头线及危险源拟合区

    Fig. 9  Fitting diagram of hazard to water head of collapse column with 10 measuring points

    图  10  10测点时陷落柱等温线及危险源拟合区

    Fig. 10  Fitting diagram of hazard to water temperature of collapsed column with 10 measuring points

    图  11  10测点时陷落柱Cl质量浓度等值线及危险源拟合区

    Fig. 11  Fitting diagram of hazard to Cl concentration of collapsed column with 10 measuring points

    图  12  10测点时断层等水头线及危险源拟合区

    Fig. 12  Fitting diagram water head of fault with 10 measuring points

    图  13  10测点时断层等温线及危险源拟合区

    Fig. 13  Fitting diagram water temperature of fault with 10 measuring points

    图  14  10测点时断层Cl质量浓度等值线及危险源拟合区

    Fig. 14  Fitting diagram of Cl concentration of fault with 10 measuring points

  • [1] 李白英. 预防矿井底板突水的"下三带"理论及其发展与应用[J]. 山东矿业学院学报(自然科学版), 1999, 18(4): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY199904004.htm

    LI Baiying. Development and application of "Down Three Zones" in the prediction of the water inrush from coalbed floor aquifer theory[J]. Journal of Shandong Institute of Mining and Technology(Natural Science), 1999, 18(4): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY199904004.htm
    [2] 王作宇, 刘鸿泉. 承压水上采煤[M]. 北京: 煤炭工业出版社, 1992.

    WANG Zuoyu, LIU Hongquan. Coal mining above confined aquifer[M]. Beijing: China Coal Industry Publishing House, 1992.
    [3] 钱鸣高, 缪协兴, 许家林. 岩层控制的关键层理论[M]. 徐州: 中国矿业大学出版社, 2003.

    QIAN Minggao, MIAO Xiexing, XU Jialin. The key layer theory of rock formation control[M]. Xuzhou: China University of Mining and Technology Press, 2003.
    [4] 施龙青, 韩进. 开采煤层底板"四带"划分理论与实践[J]. 中国矿业大学学报, 2005, 34(1): 16-23.. doi: 10.3321/j.issn:1000-1964.2005.01.004

    SHI Longqing, HAN Jin. Theory and practice of dividing coal mining area floor into four-zone[J]. Journal of China University of Mining and Technology, 2005, 34(1): 16-23.. doi: 10.3321/j.issn:1000-1964.2005.01.004
    [5] 王经明. 承压水沿煤层底板递进导升突水机理的模拟与观测[J]. 岩土工程学报, 1999, 21(5): 546-549.. doi: 10.3321/j.issn:1000-4548.1999.05.004

    WANG Jingming. In-situ measurement and physical analogue on water inrush from coal floor induced by progressive intrusion of artesian water into protective aquiclude[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 546-549.. doi: 10.3321/j.issn:1000-4548.1999.05.004
    [6] 黄浩, 王经明. 煤层底板隐伏断层突水的物理实验研究[J]. 华北科技学院学报, 2015, 12(1): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HBKJ201501005.htm

    HUANG Hao, WANG Jingming. Research on water inrush from the blind fault of coal floor by physical experiment[J]. Journal of North China Institute of Science and Technology, 2015, 12(1): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HBKJ201501005.htm
    [7] 王进尚, 姚多喜, 黄浩. 煤矿隐伏断层递进导升突水的临界判据及物理模拟研究[J]. 煤炭学报, 2018, 43(7): 2014-2020. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807026.htm

    WANG Jinshang, YAO Duoxi, HUANG Hao. Critical criterion and physical simulation research on progressive ascending water inrush in hidden faults of coal mines[J]. Journal of China Coal Society, 2018, 43(7): 2014-2020. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807026.htm
    [8] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16): 2803-2813.. doi: 10.3321/j.issn:1000-6915.2005.16.001

    HE Manchao, XIE Heping, PENG Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813.. doi: 10.3321/j.issn:1000-6915.2005.16.001
    [9] 尹尚先, 武强, 王尚旭. 华北岩溶陷落柱突水的水文地质及力学基础[J]. 煤炭学报, 2004, 29(2): 182-185.. doi: 10.3321/j.issn:0253-9993.2004.02.013

    YIN Shangxian, WU Qiang, WANG Shangxu. Hydrogeological and mechanical basics of water inrush from karstic collapse columns in northern China[J]. Journal of China Coal Society, 2004, 29(2): 182-185.. doi: 10.3321/j.issn:0253-9993.2004.02.013
    [10] 王经明, 董书宁, 吕玲, 等. 采矿对断层的扰动及水文地质效应[J]. 煤炭学报, 1997, 22(4): 361-365.. doi: 10.3321/j.issn:0253-9993.1997.04.005

    WANG Jingming, DONG Shuning, LYU Ling, et al. Mining disturbance on faults in panel and the hydrogeological effect[J]. Journal of China Coal Society, 1997, 22(4): 361-365.. doi: 10.3321/j.issn:0253-9993.1997.04.005
    [11] 李浩, 白海波, 武建军, 等. D-P随机损伤本构模型及其在预防陷落柱突水中的应用[J]. 岩土力学, 2018, 39(12): 4577-4587. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812033.htm

    LI Hao, BAI Haibo, WU Jianjun, et al. D-P stochastic damage constitutive model and its application in preventing water inrush of karst collapsed column[J]. Rock and Soil Mechanics, 2018, 39(12): 4577-4587. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812033.htm
    [12] 李连崇, 唐春安, 左宇军, 等. 煤层底板下隐伏陷落柱的滞后突水机理[J]. 煤炭学报, 2009, 34(9): 1212-1216.. doi: 10.3321/j.issn:0253-9993.2009.09.013

    LI Lianchong, TANG Chun'an, ZUO Yujun, et al. Mechanism of hysteretic groundwater inrush from coal seam floor with karstic collapse columns[J]. Journal of China Coal Society, 2009, 34(9): 1212-1216.. doi: 10.3321/j.issn:0253-9993.2009.09.013
    [13] 谢志钢, 刘启蒙, 柴辉婵, 等. 煤层底板隐伏陷落柱突水预测及采前注浆加固评价[J]. 中国安全生产科学技术, 2019, 15(5): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201905023.htm

    XIE Zhigang, LIU Qimeng, CHAI Huichan, et al. Prediction of water inrush from hidden collapse column at coal seam floor and evaluation of grouting reinforcement before mining[J]. Journal of Safety Science and Technology, 2019, 15(5): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201905023.htm
    [14] 贾贵廷, 胡宽瑢. 华北型煤田陷落柱的形成及分布规律[J]. 中国岩溶, 1989, 8(4): 261-267. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR198904001.htm

    JIA Guiting, HU Kuanrong. The formation and distribution of collapse columns in North-China-type coal fields[J]. Carsologica Sinica, 1989, 8(4): 261-267. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR198904001.htm
    [15] 司淑平, 马建民, 胡得西. 煤系地层陷落柱成因机理及分布规律研究[J]. 断块油气田, 2001, 8(2): 15-18.. doi: 10.3969/j.issn.1005-8907.2001.02.005

    SI Shuping, MA Jianmin, HU Dexi. The origin mechanism and distribution regularity of karst collapse in coal measure strata[J]. Pault-Block Oil & Gas Field, 2001, 8(2): 15-18.. doi: 10.3969/j.issn.1005-8907.2001.02.005
    [16] WANG Jingming, LIU Xianwei, LIU Wensheng, et al. The inner circulation mechanism in sinking column formation in North China coal field: A case study in Fengfeng mining areas[J]. Journal of Coal Science & Engineering, 2007, 13(1): 32-36. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-coal-english_thesis/0201217017351.html
    [17] 董海洲, 张小燕. 堤坝渗漏圆柱状热源模型及试验研究[J]. 岩石力学与工程学报, 2011, 30(增刊2): 3665-3670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2040.htm

    DONG Haizhou, ZHANG Xiaoyan. Seepage cylindrical heat source model of dam and its experimental study[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Sup. 2): 3665-3670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2040.htm
    [18] 何满潮, 张毅, 乾增珍, 等. 深部矿井热害治理地层储冷数值模拟研究[J]. 湖南科技大学学报(自然科学版), 2006, 21(2): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200602003.htm

    HE Manchao, ZHANG Yi, QIAN Zengzhen, et al. Numerical simulation study on utilizing aquifers to store cool energy in fathing deep mine heat-harm[J]. Journal of Hunan University of Science & Technology(Natural Science Edition), 2006, 21(2): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200602003.htm
  • 加载中
图(14)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  18
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-24
  • 修回日期:  2021-05-25
  • 发布日期:  2021-08-25
  • 网络出版日期:  2021-09-10

目录

    /

    返回文章
    返回