留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同联合预处理对褐煤厌氧发酵产甲烷的影响

张怀文 姚义清 谢昌文

张怀文, 姚义清, 谢昌文. 不同联合预处理对褐煤厌氧发酵产甲烷的影响[J]. 煤田地质与勘探, 2021, 49(4): 162-169. doi: 10.3969/j.issn.1001-1986.2021.04.019
引用本文: 张怀文, 姚义清, 谢昌文. 不同联合预处理对褐煤厌氧发酵产甲烷的影响[J]. 煤田地质与勘探, 2021, 49(4): 162-169. doi: 10.3969/j.issn.1001-1986.2021.04.019
ZHANG Huaiwen, YAO Yiqing, XIE Changwen. Effects of different combined pretreatments on biogenic methane production by anaerobic digestion of lignite[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 162-169. doi: 10.3969/j.issn.1001-1986.2021.04.019
Citation: ZHANG Huaiwen, YAO Yiqing, XIE Changwen. Effects of different combined pretreatments on biogenic methane production by anaerobic digestion of lignite[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 162-169. doi: 10.3969/j.issn.1001-1986.2021.04.019

不同联合预处理对褐煤厌氧发酵产甲烷的影响

doi: 10.3969/j.issn.1001-1986.2021.04.019
基金项目: 

陕西省高层次人才引进计划青年项目 A279021901

陕西省留学人员科技活动择优资助项目 2020002

陕西省重点研发计划项目 2020NY-114

详细信息
    第一作者:

    张怀文,1992年生,男,山西晋中人,博士研究生,研究方向为煤炭的高效生物转化. E-mail:1136636126@qq.com

    通信作者:

    姚义清,1986年生,男,陕西富平人,博士,教授,博士生导师,从事煤炭与生物质高效生物转化研究. E-mail:dzhtyao@126.com

  • 中图分类号: P618.11

Effects of different combined pretreatments on biogenic methane production by anaerobic digestion of lignite

  • 摘要: 高效实用的预处理方式对提高甲烷产量具有重要的作用,但单一的预处理方式往往较难获得满意效果,尤其是针对组成成分复杂的褐煤而言,对其后续产甲烷性能的影响更是存在不确定性。为探讨不同联合预处理对褐煤厌氧发酵产甲烷的影响,以1.00%HCl+5.00%H2O2(1号)、6.00%NaOH+5.00%H2O2(2号)、1.00%HCl+10.00 g木质素酶(3号)、6.00%NaOH+10.00 g木质素酶(4号)、5.00%H2O2+10.00 g木质素酶(5号)等不同联合预处理褐煤为实验组,未经预处理煤样为对照组(6号),在适宜菌种来源和环境条件下进行厌氧发酵产甲烷实验。利用比色法、气质联用法、扫描电镜等对联合预处理产甲烷过程中的糖类、挥发性脂肪酸含量及煤降解特征进行分析,以揭示其影响机理。结果表明:①不同联合预处理均可以增加褐煤发酵产甲烷量。4与5号联合预处理效果较好,累积甲烷产量分别是20.36 mL/g与8.83 mL/g,相比6号对照样分别提高了24.24倍与10.51倍。②各实验组COD(化学需氧量)去除率均高于对照组,且反应前后菌液pH波动值小。③反应初期3号实验组多糖含量最低(0.37 μg/mL),6号多糖含量最高(2.15 μg/mL),且均呈现出先下降后上升的总体趋势。④ 2、3与5号实验组还原糖含量在整个反应过程中保持较高值,且反应末期各产气组糖类含量均不为零。⑤不同联合预处理均可以促进乙酸、丁酸的降解并提高产气率。不同条件下的褐煤产甲烷量与转化率变化特征,证实了联合预处理煤增产生物甲烷的有效性,可为煤制生物气技术的产业化应用提供借鉴。

     

  • 图  生物产气模拟装置

    1—发酵瓶;2—瓶盖;3、6—穿刺钢针;4—液体取样口;5—气体取样口;7—橡胶软管;8—洗气瓶;9—集气装置

    Fig. 1  Simulation device for biogenic gas production

    图  不同联合预处理方式下累积甲烷产量变化特征

    Fig. 2  Variation in cumulative methane production with different joint pretreatment

    图  COD质量浓度与pH值

    Fig. 3  COD mass concentration and pH

    图  多糖与还原糖含量

    Fig. 4  Polysaccharide and reducing sugar content

    图  各产气组转化率

    Fig. 5  Conversion rates and carbon contents of each gas- producing group

    图  不同联合预处理煤样形貌特征

    Fig. 6  Surface morphologies of the coal samples after different joint pretreatment

    表  1  褐煤的工业和元素分析

    Table  1  Proximate and ultimate analysis of lignite

    工业分析ω/% 元素分析ω/%
    Mad Aad Vad FCad Cdaf Hdaf Ndaf (O+S)daf
    7.46 10.71 35.08 46.75 75.67 4.76 1.05 18.52
    下载: 导出CSV

    表  2  褐煤的联合预处理

    Table  2  Joint pretreatment of lignite

    实验编号 预处理方法 预处理条件
    1 机械研磨+1%HCl+5%H2O2 先机械研磨,而后用HCl预处理24 h,再用H2O2预处理24 h
    2 机械研磨+6.00% NaOH+5.00% H2O2 先机械研磨,而后用NaOH预处理24 h,再用H2O2预处理24 h
    3 机械研磨+1.00% HCl+10.00 g木质素酶 先机械研磨,而后用HCl预处理24 h,再用木质素酶预处理24 h
    4 机械研磨+6.00% NaOH+10.00 g木质素酶 先机械研磨,而后用NaOH预处理24 h,再用木质素酶预处理24 h
    5 机械研磨+5.00% H2O2+10.00 g木质素酶 先机械研磨,而后用H2O2预处理24 h,再用木质素酶预处理24 h
    6 机械研磨
    下载: 导出CSV

    表  3  各产气组发酵液内VFAs的质量浓度

    Table  3  Mass concentrations of VFAs in the fermentation broth of each gas-producing group  单位: μg/mL

    实验编号 乙酸 丙酸 丁酸 异丁酸 戊酸 异戊酸
    1 12.38±0.85 1.08±0.19 2.30±0.12 0.21±0.18 0.03±0.01 2.23±0.24
    2 11.48±0.92 1.56±0.10 0.12±0.06 0.27±0.07 0.01±0.00 0.07±0.01
    3 11.91±1.43 2.61±0.95 9.60±1.71 3.88±0.09 0.04±0.01 4.33±0.29
    4 10.56±1.06 2.57±0.34 5.80±0.65 0.21±0.05 0.02±0.00 0.28±0.15
    5 10.49±1.38 2.30±0.38 12.35±1.42 4.13±0.27 0.15±0.05 0.41±0.08
    6 14.52±0.78 2.01±0.16 12.63±0.59 0.20±0.06 0.02±0.01 0.54±0.07
    下载: 导出CSV
  • [1] WANG Aikuan, SHAO Pei, LAN Fengjuan, et al. Organic chemicals in coal available to microbes to produce biogenic coalbed methane: A review of current knowledge[J]. Journal of Natural Gas Science and Engineering, 2018, 60: 40-48.. doi: 10.1016/j.jngse.2018.09.025
    [2] MAYUMI D, MOCHIMARU H, TAMAKI H, et al. Methane production from coal by a single methanogen[J]. Science, 2016, 354(6309): 222-225.. doi: 10.1126/science.aaf8821
    [3] ROBBINS S J, EVANS P N, ESTERLE J S, et al. The effect of coal rank on biogenic methane potential and microbial composition[J]. International Journal of Coal Geology, 2016, 154-155: 205-212.. doi: 10.1016/j.coal.2016.01.001
    [4] 王姗姗, 韩娅新, 何环, 等. 煤层水中一株产甲烷菌的分离与系统发育分析[J]. 应用与环境生物学报, 2014, 20(1): 123-127. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201401021.htm

    WANG Shanshan, HAN Yaxin, HE Huan, et al. Isolation and phylogenic analysis of a methanogen from coal bed water[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(1): 123-127. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201401021.htm
    [5] PARK S Y, LIANG Yanna. Biogenic methane production from coal: A review on recent research and development on microbially enhanced coalbed methane(MECBM)[J]. Fuel, 2016, 166: 258-267.. doi: 10.1016/j.fuel.2015.10.121
    [6] 夏大平, 黄松, 张怀文. 褐煤发酵制生物氢过程中关键液相产物的变化规律[J]. 天然气工业, 2019, 39(8): 146-153. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201908025.htm

    XIA Daping, HUANG Song, ZHANG Huaiwen. Transformation analysis of key liquid phase products during lignite fermentation to produce biological hydrogen[J]. Nature Gas Industry, 2019, 39(8): 146-153. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201908025.htm
    [7] HARRIS S H, SMITH R L, BARKER C E. Microbial and chemical factors influencing methane production in laboratory incubations of low-rank subsurface coals[J]. International Journal of Coal Geology, 2008, 76: 46-51.. doi: 10.1016/j.coal.2008.05.019
    [8] HUANG Zaixing, URYNOWICZ M A, COLBERG P J S. Stimulation of biogenic methane generation in coal samples following chemical treatment with potassium permanganate[J]. Fuel, 2013, 111: 813-819.. doi: 10.1016/j.fuel.2013.03.079
    [9] HUANG Zaixing, URYNOWICZ M A, COLBERG P J S. Bioassay of chemically treated subbituminous coal derivatives using Pseudomonas putida F1[J]. International Journal of Coal Geology, 2013, 115: 97-105.. doi: 10.1016/j.coal.2013.01.012
    [10] GUO Hongyu, LIU Xile, BAI Yang, et al. Impact of coal particle size on biogenic methane metabolism and its significance[J]. Journal of Computational and Theoretical Nanoscience, 2016, 13(2): 1297-1301.. doi: 10.1166/jctn.2016.5046
    [11] DONG Pengwei, YUE Junrong, GAO Shiqiu, et al. Influence of thermal pretreatment on pyrolysis of lignite[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8): 897-905.. doi: 10.1016/S1872-5813(12)60033-4
    [12] 席国赟, 张璐鑫, 王晓昌. 木质纤维素厌氧消化产甲烷的化学预处理方法研究进展[J]. 纤维素科学与技术, 2017, 25(2): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-XWSK201702011.htm

    XI Guoyun, ZHANG Luxin, WANG Xiaochang. Recent progress in study on chemical technology for pretreating lignocellulose to methane production in anaerobic digestion[J]. Journal of Cellulose Science and Technology, 2017, 25(2): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-XWSK201702011.htm
    [13] ZHANG Han, NING Zhifang, KHALID H, et al. Enhancement of methane production from cotton stalk using different pretreatment techniques[J]. Scientific Reports, 2018, 8: 3463-3471.. doi: 10.1038/s41598-018-21413-x
    [14] CHEN Tianyuan, RODRIGUES S, GOLDING S D, et al. Improving coal bioavailability for biogenic methane production via hydrogen peroxide oxidation[J]. International Journal of Coal Geology, 2018, 195: 402-414.. doi: 10.1016/j.coal.2018.06.011
    [15] HAQ S R, TAMAMURA S, IGARASHI T, et al. Characterization of organic substances in lignite before and after hydrogen peroxide treatment: Implications for microbially enhanced coalbed methane[J]. International Journal of Coal Geology, 2018, 185: 1-11.. doi: 10.1016/j.coal.2017.11.009
    [16] CAI Jingling, WANG Guangce. Comparison of different pre-treatment methods for enriching hydrogen-producing bacteria from intertidal sludge[J]. International Journal of Green Energy, 2016, 13(3): 292-297.. doi: 10.1080/15435075.2014.893436
    [17] HOSSEINI K E, DAHADHA S, BAZYAR LAKEH A A, et al. Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production: A review[J]. Journal of Environmental Management, 2019, 233: 774-784. http://www.ncbi.nlm.nih.gov/pubmed/30314871
    [18] 张怀文, 黄松, 闫夏彤, 等. 白腐真菌预处理对煤厌氧发酵产甲烷的影响[J]. 煤田地质与勘探, 2020, 48(2): 120-125.. doi: 10.3969/j.issn.1001-1986.2020.02.019

    ZHANG Huaiwen, HUANG Song, YAN Xiatong, et al. Effect of white rot fungi pretreatment on methane production from anaerobic fermentation of coal[J]. Coal Geology & Exploration, 2020, 48(2): 120-125.. doi: 10.3969/j.issn.1001-1986.2020.02.019
    [19] 赵星程. 厌氧污泥中微生物降解褐煤产甲烷的初步探究[D]. 天津: 天津理工大学, 2019.

    ZHAO Xingcheng. Preliminary study on microbial degradation of methane from lignite in anaerobic sludge[D]. Tianjin: Tianjin University of Technology, 2019.
    [20] 夏大平, 苏现波, 吴昱, 等. 不同预处理方式和模拟产气实验对煤结构的影响[J]. 煤炭学报, 2013, 38(1): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201301020.htm

    XIA Daping, SU Xianbo, WU Yu, et al. Effect of experimental of different pretreatment methods and simulating biogenic methane production on coal structure[J]. Journal of China Coal Society, 2013, 38(1): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201301020.htm
    [21] 夏大平, 陈曦, 王闯, 等. 褐煤酸碱预处理-微生物气化联产H2-CH4的实验研究[J]. 煤炭学报, 2017, 12(42): 3221-3228.

    XIA Daping, CHEN Xi, WANG Chuang, et al. Experimental study on the production of H2-CH4 from lignite jointly with acid-alkali pretreatment-microbial gasification[J]. Journal of China Coal Society, 12(42): 3221-3228.
    [22] YADAV M, VIVEKANAND V. Combined fungal and bacterial pretreatment of wheat and pearl millet straw for biogas production: A study from batch to continuous stirred tank reactors[J]. Bioresource Technology, 2020, 321: 124523. http://www.sciencedirect.com/science/article/pii/S0960852420317971
    [23] FARHAT A, ASSEs N, ENNOURI H, et al. Combined effects of thermal pretreatment and increasing organic loading by co-substrate addition for enhancing municipal sewage sludge anaerobic digestion and energy production[J]. Process Safety and Environmental Protection, 2018, 119: 14-22. http://www.sciencedirect.com/science/article/pii/S0957582018305226
    [24] HAFID H S, RAHMAN N A, SHAH U K M, et al. Enhanced fermentable sugar production from kitchen waste using various pretreatments[J]. Journal of Environmental Management, 2015, 156: 290-298. http://www.cabdirect.org/abstracts/20153202453.html
    [25] SU Xianbo, HONG Jiangtao, XIA Daping, et al. The variety and transition of key intermediate liquid products during the process of coal-to-biohydrogen fermentation[J]. International Journal of Energy Research, 2019, 43(1): 568-579. doi: 10.1002/er.4303
    [26] GUO Hongyu, GAO Zhixiang, XIA Daping, et al. Simulation study on the biological methanation of CO2 sequestered in coal seams[J]. Journal of CO2 Utilization, 2019, 34: 171-179.
    [27] 柳珊, 吴树彪, 张万钦, 等. 白腐真菌预处理对玉米秸秆厌氧发酵产甲烷影响实验[J]. 农业机械学报, 2013, 44(增刊2): 124-129. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX2013S2025.htm

    LIU Shan, WU Shubiao, ZHANG Wanqin, et al. Effect of white-rot fungi pretreatment on methane production from anaerobic digestion of corn stover[J]. Transactions on the Chinese Society for Agricultural Machinery, 2013, 44(Sup. 2): 124-129. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX2013S2025.htm
    [28] 张双全. 煤化学(第4版)[M]. 徐州: 中国矿业大学出版社, 2015.

    ZHANG Shuangquan. Coal chemistry(4rd Edition)[M]. Xuzhou: China University of Mining and Technology Press, 2015.
    [29] 拜阳. 煤层产甲烷菌群的迁移特征研究[D]. 焦作: 河南理工大学, 2017.

    BAI Yang. Migration characteristics of methanogenic consortia in coal seam[D]. Jiaozuo: Henan Polytechnic University, 2017.
    [30] 徐一雯, 蒋建国, 刘诺, 等. 预处理对厨余垃圾等有机废弃物联合厌氧发酵的影响[J]. 清华大学学报(自然科学版), 2019, 59(7): 558-566. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201907009.htm

    XU Yiwen, JIANG Jianguo, LIU Nuo, et al. Effects of pretreatment on anaerobic co-digestion of kitchen waste and other organic wastes[J]. J Tsinghua University(Science & Technology), 2019, 59(7): 558-566. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201907009.htm
    [31] 秦智, 任南琪, 李建政. 丁酸型发酵产氢的运行稳定性[J]. 太阳能学报, 2004, 25(1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200401009.htm

    QIN Zhi, REN Nanqi, LI Jianzheng. Operational stability of butyric acid type fermentation in biological hydrogen production system[J]. Acta Energiae Solaris Sinica, 2004, 25(1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200401009.htm
    [32] 陈雪, 李秀金, 张文海, 等. 酸化相发酵类型对甲烷相产甲烷性能的影响[J]. 环境工程学报, 2017, 11(11): 6007-6013. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201711032.htm

    CHEN Xue, LI Xiujin, ZHANG Wenhai, et al. Effects of fermentation type of acidogenic phase on biomethane yield of methanogenic phase[J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 6007-6013. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201711032.htm
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  44
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 修回日期:  2021-04-28
  • 发布日期:  2021-08-25
  • 网络出版日期:  2021-09-10

目录

    /

    返回文章
    返回